【題目】已知拋物線y=ax2+bx-3經(jīng)過(guò)(-1,0),(3,0)兩點(diǎn),與y軸交于點(diǎn)C,直線y=kx與拋物線交于A,B兩點(diǎn).
(1)寫出點(diǎn)C的坐標(biāo)并求出此拋物線的解析式;
(2)當(dāng)原點(diǎn)O為線段AB的中點(diǎn)時(shí),求k的值及A,B兩點(diǎn)的坐標(biāo);
(3)是否存在實(shí)數(shù)k使得△ABC的面積為?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1)y=x2﹣2x﹣3;(2)當(dāng)原點(diǎn)O為線段AB的中點(diǎn)時(shí),k的值為﹣2,點(diǎn)A的坐標(biāo)為(﹣,2),點(diǎn)B的坐標(biāo)為(,﹣2).(3)不存在,理由詳見(jiàn)解析.
【解析】
試題(1)令x=0求出y值即可得出C點(diǎn)的坐標(biāo),又有點(diǎn)(﹣1,0)、(3,0),利用待定系數(shù)法求拋物線的解析式即可;(2)將正比例函數(shù)解析式代入拋物線解析式中,找出關(guān)于x的一元二次方程,根據(jù)根與系數(shù)的關(guān)系即可得出“xA+xB=2+k,xAxB=﹣3”,結(jié)合點(diǎn)O為線段AB的中點(diǎn)即可得出xA+xB=2+k=0,由此得出k的值,將k的值代入一元二次方程中求出xA、xB,在代入一次函數(shù)解析式中即可得出點(diǎn)A、B的坐標(biāo);(3)假設(shè)存在,利用三角形的面積公式以及(2)中得到的“xA+xB=2+k,xAxB=﹣3”,即可得出關(guān)于k的一元二次方程,結(jié)合方程無(wú)解即可得出假設(shè)不成立,從而得出不存在滿足題意的k值.
試題解析:(1)令拋物線y=ax2+bx﹣3中x=0,則y=﹣3,
∴點(diǎn)C的坐標(biāo)為(0,﹣3).
∵拋物線y=ax2+bx﹣3經(jīng)過(guò)(﹣1,0),(3,0)兩點(diǎn),
∴有,解得:,
∴此拋物線的解析式為y=x2﹣2x﹣3.
(2)將y=kx代入y=x2﹣2x﹣3中得:kx=x2﹣2x﹣3,
整理得:x2﹣(2+k)x﹣3=0,
∴xA+xB=2+k,xAxB=﹣3.
∵原點(diǎn)O為線段AB的中點(diǎn),
∴xA+xB=2+k=0,
解得:k=﹣2.
當(dāng)k=﹣2時(shí),x2﹣(2+k)x﹣3=x2﹣3=0,
解得:xA=﹣,xB=.
∴yA=﹣2xA=2,yB=﹣2xB=2.
故當(dāng)原點(diǎn)O為線段AB的中點(diǎn)時(shí),k的值為﹣2,點(diǎn)A的坐標(biāo)為(﹣,2),點(diǎn)B的坐標(biāo)為(,﹣2).
(3)假設(shè)存在.
由(2)可知:xA+xB=2+k,xAxB=﹣3,
S△ABC=OC|xA﹣xB|=×3×=,
∴(2+k)2﹣4×(﹣3)=10,即(2+k)2+2=0.
∵(2+k)2非負(fù),無(wú)解.
故假設(shè)不成立.
所以不存在實(shí)數(shù)k使得△ABC的面積為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)已知y=(m2+m)+(m﹣3)x+m2是x的二次函數(shù),求出它的解析式.
(2)用配方法求二次函數(shù)y=﹣x2+5x﹣7的頂點(diǎn)坐標(biāo)并求出函數(shù)的最大值或最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在⊙O中,半徑OC=6,D為半徑OC上異于O,C的點(diǎn),過(guò)點(diǎn)D作AB⊥OC,交⊙O于A,B,點(diǎn)E在線段AB上,AE=CE,點(diǎn)P在線段EC的延長(zhǎng)線上,PB=PE.
(1)若OD=2,求弦AB的長(zhǎng);
(2)當(dāng)點(diǎn)D在線段OC(不含端點(diǎn))上移動(dòng)時(shí),直線PB與⊙O有怎樣的位置關(guān)系?請(qǐng)說(shuō)明理由;
(3)點(diǎn)Q是⊙O上的一個(gè)動(dòng)點(diǎn),若點(diǎn)D為OC中點(diǎn)時(shí),線段PQ的最小值為多少?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】梧桐山是深圳最高的山峰,某校綜合實(shí)踐活動(dòng)小組要測(cè)量“主山峰”的高度,先在梧桐山對(duì)面廣場(chǎng)的A處測(cè)得“峰頂”C的仰角為45o , 此時(shí),他們剛好與峰底D在同一水平線上。然后沿著坡度為30o的斜坡正對(duì)著“主山峰”前行700米,到達(dá)B處,再測(cè)得“峰頂”C的仰角為60o , 如圖,根據(jù)以上條件求出“主山峰”的高度?(測(cè)角儀的高度忽略不計(jì),結(jié)果精確到1米.參考數(shù)據(jù):(1.4,1.7)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列一元二次方程兩實(shí)數(shù)根和為﹣4的是( )
A. x2+2x﹣4=0 B. x2﹣4x+4=0 C. x2+4x+10=0 D. x2+4x﹣5=0
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸.上有兩個(gè)長(zhǎng)方形和,這兩個(gè)長(zhǎng)方形的寬都是個(gè)單位長(zhǎng)度,長(zhǎng)方形的長(zhǎng)是個(gè)單位長(zhǎng)度,長(zhǎng)方形的長(zhǎng)是個(gè)單位長(zhǎng)度,點(diǎn)在數(shù)軸上表示的數(shù)是,且兩點(diǎn)之間的距離為.
點(diǎn)在數(shù)軸上表示的數(shù)是 ,點(diǎn)在數(shù)軸上表示的數(shù)是
若線段的中點(diǎn)為,線段上有一點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),以每秒個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒,問(wèn)當(dāng)為多少時(shí),原點(diǎn)恰為線段的三等分點(diǎn)?
若線段的中點(diǎn)為,線段上有一點(diǎn),長(zhǎng)方形以每秒個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng),長(zhǎng)方形保持不動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為秒,是否存在一個(gè)的值,使以三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,求的值;不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在△ABC中,AB=AC=6,∠B=30°,E為BC上一點(diǎn),BE=2EC,DE=DC,∠ADC=60°,則AD的長(zhǎng)_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=3x與雙曲線y=相交于點(diǎn)A,B,點(diǎn)C的坐標(biāo)是(-4,0),且AO=AC.
(1)求雙曲線的解析式.
(2)已知A、B兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】超速行駛是引發(fā)交通事故的主要原因之一,小明和三位同學(xué)嘗試用自己所學(xué)的知識(shí)檢測(cè)車速,如圖,觀測(cè)點(diǎn)設(shè)在A處,距離大路(BC)為30米,一輛小轎車由西向東勻速行駛,測(cè)得此車從B處到C處所用的時(shí)間為5秒,∠BAC=60°.
(1)求B、C兩點(diǎn)間的距離.
(2)請(qǐng)判斷此車是否超過(guò)了BC路段限速40千米/小時(shí)的速度.(參考數(shù)據(jù):≈1.732,≈1.414)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com