【題目】我市某中學為了解本校學生對“掃黑除惡專項斗爭”的了解程度,在全校范圍內(nèi)隨機抽查了部分學生,將收集的數(shù)據(jù)繪制成如下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息,解答下列問題:

1)在本次抽樣調(diào)查中,共抽取了 名學生.

2)在扇形統(tǒng)計圖中,“不了解”部分所對應(yīng)的圓心角的度數(shù)為

3)補全條形統(tǒng)計圖.

4)若該校有2000名學生,根據(jù)調(diào)查結(jié)果,對“掃黑除惡專項斗爭”“了解一點”的學生人數(shù)約為多少人?

【答案】180;(2 36;(3)詳見解析;(41400

【解析】

1)根據(jù)比較了解的人數(shù)和所占百分比即可求出總?cè)藬?shù);

2)求出不了解部分所占百分比,然后乘以360°;

3)求出了解一點的人數(shù)即可補全條形統(tǒng)計圖;

4)用2000乘以了解一點所占的百分比即可.

解:(116÷20%=80(人),∴共抽取了80名學生;

2不了解部分所對應(yīng)的圓心角的度數(shù)=360°×=36°;

3)了解一點的人數(shù)=80-16-8=56(人),

補全條形統(tǒng)計圖如下:

4)對掃黑除惡專項斗爭”“了解一點的學生人數(shù)約為:2000×=1400(人).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,點O在斜邊AB上,以O(shè)為圓心,OB為半徑作圓,分別與BC,AB相交于點D,E,連結(jié)AD.已知∠CAD=∠B,

(1)求證:AD是⊙O的切線.

(2)若BC=8,tanB=,求⊙O 的半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC在平面直角坐標系xOy中的位置如圖所示.

1)若△A1B1C1與△ABC關(guān)于原點O成中心對稱,則點A1的坐標為_____

2)將△ABC向右平移4個單位長度得到△A2B2C2,則點B2的坐標為_____

3)畫出△ABCO點順時針方向旋轉(zhuǎn)90°得到的△A3B3C3,并求點C走過的路徑長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著信息技術(shù)的快速發(fā)展,人們購物的付款方式更加多樣、便捷.某校數(shù)學興趣小組為了解人們最喜歡的付款方式設(shè)計了一份調(diào)查問卷,要求被調(diào)查者選且只選其中一種你最喜歡的付款方式.現(xiàn)將調(diào)查結(jié)果進行統(tǒng)計并繪制成如下兩幅不完整的統(tǒng)計圖,請根據(jù)統(tǒng)計圖回答下列問題:

(1)這次活動共調(diào)查了 人;在扇形統(tǒng)計圖中,表示“其他”付款的扇形圓心角的度數(shù)為  ;

(2)補全條形統(tǒng)計圖;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線上有兩點M(m+1,a)、N(m,b).

(1)a=-1,m1時,求拋物線的解析式;

(2)用含a、m的代數(shù)式表示bc;

(3)a0時,拋物線滿足,,,

a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,圓心為P,)的動圓經(jīng)過點A1,2)且與軸相切于點B.

1)當=2是,求⊙P的半徑;

2)求關(guān)于的函數(shù)解析式,在圖②中畫出此函數(shù)圖像;

3)請類比圓的定義(圓可以看成是到定點的距離等于定長的所有點的集合),給(2)中所得函數(shù)圖像進行定義:此函數(shù)圖像可以看成是到 的距離等于到 的距離的所有點的集合;

(4)當⊙P的半徑為1時,若⊙P與以上(2)中所得函數(shù)圖象相交于點CD,其中交點D,)在點C的右側(cè),請利用圖②,則cosAPD=

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,、、為矩形的四個頂點,,動點、分別從點、同時出發(fā),點的速度向點移動,一直到達為止,點的速度向移動.

、兩點從出發(fā)開始到幾秒?四邊形的面積為;

兩點從出發(fā)開始到幾秒時?點和點的距離是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校在一次大課間活動中,采用了四鐘活動形式:A、跑步,B、跳繩,C、做操,D、游戲.全校學生都選擇了一種形式參與活動,小杰對同學們選用的活動形式進行了隨機抽樣調(diào)查,根據(jù)調(diào)查統(tǒng)計結(jié)果,繪制了不完整的統(tǒng)計圖.

請結(jié)合統(tǒng)計圖,回答下列問題:

1本次調(diào)查學生共 人, = ,并將條形圖補充完整;

2如果該校有學生2000人,請你估計該校選擇跑步這種活動的學生約有多少人?

3學校讓每班在A、B、C、D四鐘活動形式中,隨機抽取兩種開展活動,請用樹狀圖或列表的方法,求每班抽取的兩種形式恰好是跑步跳繩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】平行四邊形ABCD的對角線相交于點M,△ABM的外接圓交AD于點E且圓心O恰好落在AD邊上,連接ME,若∠BCD45°

1)求證:BCO切線;

2)求∠ADB的度數(shù);

3)若ME1,求AC的長.

查看答案和解析>>

同步練習冊答案