【題目】已知:一次函數(shù)的圖象與反比例函數(shù)()的圖象相交于A,B兩點(A在B的右側(cè)).
(1)當(dāng)A(4,2)時,求反比例函數(shù)的解析式及B點的坐標(biāo);
(2)在(1)的條件下,反比例函數(shù)圖象的另一支上是否存在一點P,使△PAB是以AB為直角邊的直角三角形?若存在,求出所有符合條件的點P的坐標(biāo);若不存在,請說明理由.
(3)當(dāng)A(a,﹣2a+10),B(b,﹣2b+10)時,直線OA與此反比例函數(shù)圖象的另一支交于另一點C,連接BC交y軸于點D.若,求△ABC的面積.
【答案】(1),B(1,8);(2)(﹣4,﹣2)、(﹣16,);(3)10.
【解析】
試題(1)把點A的坐標(biāo)代入,就可求出反比例函數(shù)的解析式;解一次函數(shù)與反比例函數(shù)的解析式組成的方程組,就可得到點B的坐標(biāo);
(2)△PAB是以AB為直角邊的直角三角形,分兩種情況討論:①若∠BAP=90°,過點A作AH⊥OE于H,設(shè)AP與x軸的交點為M,如圖1,求得OE=5,OH=4,AH=2,HE=1.證明△AHM∽△EHA,再根據(jù)相似三角形的性質(zhì)可求出MH,從而得到點M的坐標(biāo),然后用待定系數(shù)法求出直線AP的解析式,再解直線AP與反比例函數(shù)的解析式組成的方程組,就可得到點P的坐標(biāo);②若∠ABP=90°,同理即可得到點P的坐標(biāo);
(3)過點B作BS⊥y軸于S,過點C作CT⊥y軸于T,連接OB,如圖2,易證△CTD∽△BSD,根據(jù)相似三角形的性質(zhì)可得.由A(a,﹣2a+10),B(b,﹣2b+10),可得C(﹣a,2a﹣10),CT=a,BS=b,即可得到.由A、B都在反比例函數(shù)的圖象上可得a(﹣2a+10)=b(﹣2b+10),把代入即可求出a的值,從而得到點A、B、C的坐標(biāo),運用待定系數(shù)法求出直線BC的解析式,從而得到點D的坐標(biāo)及OD的值,然后運用割補法可求出S△COB,再由OA=OC可得S△ABC=2S△COB.
試題解析:(1)把A(4,2)代入,得k=4×2=8,∴反比例函數(shù)的解析式為,解方程組,得:或,∴點B的坐標(biāo)為(1,8);
(2)①若∠BAP=90°,過點A作AH⊥OE于H,設(shè)AP與x軸的交點為M,如圖1,對于y=﹣2x+10,當(dāng)y=0時,﹣2x+10=0,解得x=5,∴點E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5﹣4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴,∴,∴MH=4,∴M(0,0),可設(shè)直線AP的解析式為,則有,解得m=,∴直線AP的解析式為,解方程組,得:或,∴點P的坐標(biāo)為(﹣4,﹣2).
②若∠ABP=90°,同理可得:點P的坐標(biāo)為(﹣16,).
綜上所述:符合條件的點P的坐標(biāo)為(﹣4,﹣2)、(﹣16,);
(3)過點B作BS⊥y軸于S,過點C作CT⊥y軸于T,連接OB,如圖2,則有BS∥CT,∴△CTD∽△BSD,∴.∵,∴.∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣10),CT=a,BS=b,∴=,即.∵A(a,﹣2a+10),B(b,﹣2b+10)都在反比例函數(shù)的圖象上,∴a(﹣2a+10)=b(﹣2b+10),∴a(﹣2a+10)=(﹣2×+10).∵a≠0,∴﹣2a+10=(﹣2×+10),解得:a=3.∴A(3,4),B(2,6),C(﹣3,﹣4).
設(shè)直線BC的解析式為,則有,解得:,∴直線BC的解析式為.當(dāng)x=0時,y=2,則點D(0,2),OD=2,∴S△COB=S△ODC+S△ODB=OD·CT+OD·BS=×2×3+×2×2=5.∵OA=OC,∴S△AOB=S△COB,∴S△ABC=2S△COB=10.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于A(2,m),B(-3,﹣2)兩點.
(1)求m的值;
(2)根據(jù)所給條件,請直接寫出不等式k1x+b>的解集;
(3)若P(p,y1),Q(﹣2,y2)是函數(shù)y=圖象上的兩點, 且y1>y2,求實數(shù)p的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,點E在對角線AC上(不與點A、C重合),∠EDC=∠ACB,DE的延長線與射線CB交于點F,設(shè)AD的長為x.
(1)如圖1,當(dāng)DF⊥BC時,求AD的長;
(2)設(shè)EC=y,求y關(guān)于x的函數(shù)解析式,并直接寫出定義域;
(3)當(dāng)△DFC是等腰三角形時,求AD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+2ax﹣3a(a<0)與x軸相交于A,B兩點,與y軸相交于點C,頂點為D,直線DC與x軸相交于點E.
(1)當(dāng)a=﹣1時,求拋物線頂點D的坐標(biāo),OE等于多少;
(2)OE的長是否與a值有關(guān),說明你的理由;
(3)設(shè)∠DEO=β,45°≤β≤60°,求a的取值范圍;
(4)以DE為斜邊,在直線DE的左下方作等腰直角三角形PDE.設(shè)P(m,n),直接寫出n關(guān)于m的函數(shù)解析式及自變量m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年東營市教育局在全市中小學(xué)開展了“情系疏勒書香援疆”捐書活動,200多所學(xué)校的師生踴躍參與,向新疆疏勒縣中小學(xué)共捐贈愛心圖書28.5萬余本.某學(xué)校學(xué)生社團(tuán)對本校九年級學(xué)生所捐圖書進(jìn)行統(tǒng)計,根據(jù)收集的數(shù)據(jù)繪制了下面不完整的統(tǒng)計圖表.請你根據(jù)統(tǒng)計圖表中所提供的信息解答下列問題:
圖書種類 | 頻數(shù)(本) | 頻率 |
名人傳記 | 175 | a |
科普圖書 | b | 0.30 |
小說 | 110 | c |
其他 | 65 | d |
(1)求該校九年級共捐書多少本;
(2)統(tǒng)計表中的a= ,b= ,c= ,d= ;
(3)若該校共捐書1500本,請估計“科普圖書”和“小說”一共多少本;
(4)該社團(tuán)3名成員各捐書1本,分別是1本“名人傳記”,1本“科普圖書”,1本“小說”,要從這3人中任選2人為受贈者寫一份自己所捐圖書的簡介,請用列表法或樹狀圖求選出的2人恰好1人捐“名人傳記”,1人捐“科普圖書”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校喜迎中華人民共和國成立70周年,將舉行以“歌唱祖國”為主題的歌詠比賽,需要在文具店購買國旗圖案貼紙和小紅旗發(fā)給學(xué)生做演出道具.已知毎袋貼紙有50張,毎袋小紅旗有20面,貼紙和小紅旗需整袋購買,每袋貼紙價格比每袋小紅旗價格少5元,用150元購買貼紙所得袋數(shù)與用200元購買小紅旗所得袋數(shù)相同.
(1)求每袋國旗圖案貼紙和每袋小紅旗的價格各是多少元?
(2)如果給每位演出學(xué)生分發(fā)國旗圖案貼紙2張,小紅旗1面.設(shè)購買國旗圖案貼紙袋(為正整數(shù)),則購買小紅旗多少袋能恰好配套?請用含的代數(shù)式表示.
(3)在文具店累計購物超過800元后,超出800元的部分可享受8折優(yōu)惠.學(xué)校按(2)中的配套方案購買,共支付元,求關(guān)于的函數(shù)關(guān)系式.現(xiàn)全校有1200名學(xué)生參加演出,需要購買國旗圖案貼紙和小紅旗各多少袋?所需總費用多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】五一期間,某商場計劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品1件和乙商品3件共需240元;購進(jìn)甲商品2件和乙商品1件共需130元.
(1)求甲、乙兩種商品每件的進(jìn)價分別是多少元?
(2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一棵大樹在一次強(qiáng)臺風(fēng)中折斷倒下,未折斷樹桿AB與地面仍保持垂直的關(guān)系,而折斷部分AC與未折斷樹桿AB形成53°的夾角.樹桿AB旁有一座與地面垂直的鐵塔DE,測得BE=6米,塔高DE=9米.在某一時刻的太陽照射下,未折斷樹桿AB落在地面的影子FB長為4米,且點F、B、C、E在同一條直線上,點F、A、D也在同一條直線上.求這棵大樹沒有折斷前的高度.(參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.33)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com