如圖,已知點(diǎn)D為等腰直角△ABC內(nèi)一點(diǎn),∠ACB=90°,∠CAD=∠CBD=15°,E為AD延長(zhǎng)線上的一點(diǎn),且CE=CA.
(1)求證:DE平分∠BDC;
(2)若點(diǎn)M在DE上,且DC=DM,求證: ME=BD.
證明見(jiàn)解析
【解析】(1)在等腰直角△ABC中,
∵AC=BC
∵∠CAD=∠CBD=15o,
∴∠BAD=∠ABD=45o-15o=30o,
∴BD=AD,
在△BDC和△ACD中
∴△BDC≌△ADC,
∴∠DCA=∠DCB=45o.
由∠BDM=∠ABD+∠BAD=30o+30o=60o,
∠EDC=∠DAC+∠DCA=15o+45o=60o,
∴∠BDM=∠EDC,
∴DE平分∠BDC;
(2)如圖,連接MC,
∵DC=DM,且∠MDC=60°,
∴△MDC是等邊三角形,即CM=CD.
又∵∠EMC=180°-∠DMC=180°-60°=120°,
∠ADC=180°-∠MDC=180°-60°=120°,
∴∠EMC=∠ADC.
又∵CE=CA,
∴∠DAC=∠CEM=15°,
∴△ADC≌△EMC,∴ME=AD=DB.
(1)靈活運(yùn)用等腰三角形的性質(zhì),全等三角形的判定及全等三角形的性質(zhì),計(jì)算∠BDM和∠EDC的度數(shù)即可
(2)綜合運(yùn)用等邊三角形的判定和它的性質(zhì),找全等三角形的條件即可
|
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com