已知一次函數(shù)y=數(shù)學公式+m(O<m≤1)的圖象為直線l,直線l繞原點O旋轉180°后得直線l',△ABC三個頂點的坐標分別為A(-數(shù)學公式,-1)、B(數(shù)學公式,-1)、C(0,2).
(1)直線AC的解析式為______,直線l'的解析式為______(可以含m);
(2)如圖,l、l'分別與△ABC的兩邊交于E、F、G、H,當m在其范圍內(nèi)變化時,判斷四邊形EFGH中有哪些量不隨m的變化而變化?并簡要說明理由;
(3)將(2)中四邊形EFGH的面積記為S,試求m與S的關系式,并求S的變化范圍;
(4)若m=1,當△ABC分別沿直線y=x與y=數(shù)學公式x平移時,判斷△ABC介于直線l,l'之間部分的面積是否改變?若不變,請指出來;若改變,請寫出面積變化的范圍.(不必說明理由)

解:(1)y=+2;y=-m.

(2)不變的量有:
①四邊形四個內(nèi)角度數(shù)不變,理由:兩直線平行同位角相等;
②梯形EFGH中位線長度不變,理由:EF+GH不變.

(3)S=,0<m≤10<s≤

(4)沿y=平移時,面積不變;
沿y=x平移時,面積改變,設其面積為S',
則0<S'≤
分析:(1)直接根據(jù)圖象可知直線l與y軸的交點縱坐標是2,所以可知y=+2;用y=-m表示l′的解析式;
(2)根據(jù)“兩直線平行同位角相等”可知四邊形四個內(nèi)角度數(shù)不變;根據(jù)“EF+GH不變”可知梯形EFGH中位線長度不變;
(3)根據(jù)梯形的面積公式可知:S=,0<m≤10<s≤;
(4)根據(jù)平移的知識可知:沿y=平移時,面積不變;沿y=x平移時,面積改變,設其面積為S',則0<S'≤
點評:主要考查了函數(shù)和幾何圖形的綜合運用.解題的關鍵是會靈活的運用函數(shù)圖象的性質和交點的意義求利用平移的性質和特點再結合具體圖形的性質求解.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2012•浦東新區(qū)二模)已知一次函數(shù)y=x+b的圖象經(jīng)過第一、三、四象限,則b的值可以是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一次函數(shù)的圖象過點A(2,4)與B(-1,-5),求:
(1)這個一次函數(shù)的解析式.
(2)△AOB的面積(O為坐標原點).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖所示,已知一次函數(shù)y1=kx+b的圖象經(jīng)過A(1,2)、B(-1,0)兩點,y2=mx+n的圖象經(jīng)過A、C(3,0)兩點,則不等式組0<kx+b<mx+n的解集是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一次函數(shù)y=kx+b的圖象經(jīng)過(1,3)和(-2,0)兩點,求關于x的方程
k
x+k
-
b
x-b
=0
的根.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2001•貴陽)已知一次函數(shù)y=2x+b,當x=2時,y=3,當x=3時y=
5
5

查看答案和解析>>

同步練習冊答案