3.如圖,AB∥CD,F(xiàn)E⊥DB,垂足為E,∠1=50°,則∠2的度數(shù)是( 。
A.30°B.40°C.50°D.60°

分析 由EF⊥BD,∠1=50°,結(jié)合三角形內(nèi)角和為180°即可求出∠D的度數(shù),再由“兩直線平行,同位角相等”即可得出結(jié)論.

解答 解:在△DEF中,∠1=∠F=50°,∠DEF=90°,
∴∠D=180°-∠DEF-∠1=40°.
∵AB∥CD,
∴∠2=∠D=40°.
故選B.

點(diǎn)評 本題考查了平行線的性質(zhì)以及三角形內(nèi)角和為180°,解題的關(guān)鍵是求出∠D=40°.本題屬于基礎(chǔ)題,難度不大,解決該題型題目時,根據(jù)平行線的性質(zhì),找出相等、互余或互補(bǔ)的角是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:解答題

13.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),A(-2,3),B(2,2).
(1)畫出三角形OAB;
(2)求三角形OAB的面積;
(3)若三角形OAB中任意一點(diǎn)P(x1,y1)經(jīng)平移后對應(yīng)點(diǎn)為P1(x1+4,y1-3),請畫出三角形OAB平移后得到的三角形O1A1B1,并寫出點(diǎn)O1,A1,B${{\;}_{1}}_{\;}^{\;}$的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四邊形ABCD是矩形,△ABD沿AD方向平移得△A1B1D1,點(diǎn)A1在AD邊上,A1B1與BD交于點(diǎn)E,D1B1與CD交于點(diǎn)F.
(1)求證:四邊形EB1FD是平行四邊形;
(2)若AB=3,BC=4,AA1=1,求B1F的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,在平面直角坐標(biāo)系中Rt△ABC的斜邊BC在x軸上,點(diǎn)B坐標(biāo)為(1,0),AC=2,∠ABC=30°,把Rt△ABC先繞B點(diǎn)順時針旋轉(zhuǎn)180°,然后再向下平移2個單位,則A點(diǎn)的對應(yīng)點(diǎn)A′的坐標(biāo)為( 。
A.(-4,-2-$\sqrt{3}$)B.(-4,-2+$\sqrt{3}$)C.(-2,-2+$\sqrt{3}$)D.(-2,-2-$\sqrt{3}$)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

18.下列圖形中,既是軸對稱圖形又是中心對稱圖形的是( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.一家蔬菜公司收購到某種綠色蔬菜140噸,準(zhǔn)備加工后進(jìn)行銷售,銷售后獲利情況如表所示:
銷售方式粗加工后銷售精加工后銷售
每噸獲利(元)10002000
已知該公司的加工能力是:每天能精加工5噸或粗加工15噸,但兩種加工不能同時進(jìn)行.受季節(jié)等條件的限制,公司必須在一定時間內(nèi)將這批蔬菜全部加工后銷售完.
(1)如果要求12天剛好加工完140噸蔬菜,則公司應(yīng)安排幾天精加工,幾天粗加工?
(2)如果先進(jìn)行精加工,然后進(jìn)行粗加工.
①試求出銷售利潤W元與精加工的蔬菜噸數(shù)m之間的函數(shù)關(guān)系式;
②若要求在不超過10天的時間內(nèi),將140噸蔬菜全部加工完后進(jìn)行銷售,則加工這批蔬菜最多獲得多少利潤?此時如何分配加工時間?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

15.如圖,AB是⊙O的直徑,點(diǎn)P在BA的延長線上,弦CD⊥AB,垂足為E,且PC2=PE•PO.
(1)求證:PC是⊙O的切線.
(2)若OE:EA=1:2,PA=6,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

4.矩形ABCD中,AC是對角線,AB=$\sqrt{3}$,將△ABC繞點(diǎn)C順時針旋轉(zhuǎn)60°,點(diǎn)B恰好落在AD邊上的點(diǎn)E處,點(diǎn)A經(jīng)過的路徑是$\widehat{AF}$,則圖中影陰部分的面積為$\frac{7}{6}π$-$\frac{3}{2}\sqrt{3}$.(結(jié)果保留π).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

5.如圖,直線EF,CD相交于點(diǎn)O,OA⊥OB,且OC平分∠AOF.
(1)若∠AOE=40°,求∠BOD的度數(shù);
(2)若∠AOE=α,求∠BOD的度數(shù).(用含α的代數(shù)式表示)

查看答案和解析>>

同步練習(xí)冊答案