【題目】如圖,直線的解析式是,直線的解析式是,點在上,的橫坐標為,作交于點,點在上,以,為鄰邊在直線,間作菱形,分別以點,為圓心,以為半徑畫弧得扇形和扇形,記扇形與扇形重疊部分的面積為;延長交于點,點在上,以,為鄰邊在,間作菱形,分別以點,為圓心,以為半徑畫弧得扇形和扇形,記扇形與扇形重疊部分的面積為按照此規(guī)律繼續(xù)作下去,則__.(用含有正整數(shù)的式子表示)
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,D、E兩點分別在BC、AD上,且AD為∠BAC的角平分線。若∠ABE=∠C,AE:ED=2:1,則△BDE與△ABC的面積比為何?( )
A. 1:6B. 1:9C. 2:13D. 2:15
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2經(jīng)過點A(2,1).
(1)求這個函數(shù)的解析式;
(2)畫出函數(shù)的圖像,寫出拋物線上點A關于y 軸的對稱點B 的坐標;
(3)拋物線上是否存在點C,使△ABC的面積等于△OAB面積的一半,若存在,求出C點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD,交BC于點E,BF平分∠ABC,交AD于點F,AE與BF交于點P,連接EF,PD.
(1)求證:四邊形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求PD.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),頂點的坐標分別為,、.
(1)平移,使點移到點,畫出平移后的,并寫出點的坐標.
(2)將繞點旋轉(zhuǎn),得到,畫出旋轉(zhuǎn)后的,并寫出點的坐標.
(3)求(2)中的點旋轉(zhuǎn)到點時,點經(jīng)過的路徑長(結(jié)果保留).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線與軸交于,兩點,與軸交于點,點是拋物線的頂點.
(1)求拋物線的解析式.
(2)點是軸負半軸上的一點,且,點在對稱軸右側(cè)的拋物線上運動,連接,與拋物線的對稱軸交于點,連接,當平分時,求點的坐標.
(3)直線交對稱軸于點,是坐標平面內(nèi)一點,請直接寫出與全等時點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸相交于點A(﹣1,0)、B(4,0),與y軸相交于點C.
(1)求該函數(shù)的表達式;
(2)點P為該函數(shù)在第一象限內(nèi)的圖象上一點,過點P作PQ⊥BC,垂足為點Q,連接PC.
①求線段PQ的最大值;
②若以點P、C、Q為頂點的三角形與△ABC相似,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠B=90°,AB=12mm,BC=24mm,動點P從點A開始沿邊AB向B以2mm/s的速度移動(不與點B重合),動點Q從點B開始沿邊BC向C以4mm/s的速度移動(不與點C重合).如果P、Q分別從A、B同時出發(fā),設運動的時間為xs,四邊形APQC的面積為ymm2.
(1)y與x之間的函數(shù)關系式;
(2)求自變量x的取值范圍;
(3)四邊形APQC的面積能否等于172mm2.若能,求出運動的時間;若不能,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知頂點為(﹣3,﹣6)的拋物線y=ax2+bx+c經(jīng)過點(﹣1,﹣4),則下列結(jié)論中錯誤的是( 。
A. b2>4ac
B. ax2+bx+c≥﹣6
C. 若點(﹣2,m),(﹣5,n)在拋物線上,則m>n
D. 關于x的一元二次方程ax2+bx+c=﹣4的兩根為﹣5和﹣1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com