【題目】如圖,在RtABC中,∠ABC=90°,AB=4,BC=3,以點B為圓心,適當(dāng)長為半徑畫弧交邊于DE兩點(按照A,D,EC依次排列,且DE不重合).D、E分別作ABBC的垂線段交于F、G兩點,如果線段DF=xEG=y,則x、y的關(guān)系式為(

A.20x-15y=B.20x-15y=

C.15x-20y=D.15x-20y=

【答案】A

【解析】

BHACAC于點H,通過等積法求出BH、AD、CE的長度,再根據(jù)勾股定理求出AH、CH長度,由EH=DH列出xy之間的關(guān)系式,化簡即可.

解:作BHACAC于點H;

,


;
解得:;

;
解得
;
;
解得;
中,
,;
由題得BD=BE,且BHDE;
;

;
整理得
故選:A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一方有難,八方支援. 在湖北武漢新冠肺炎疫情爆發(fā)期間,我市甲、乙兩所醫(yī)院分別有一男一女共4名醫(yī)護人員參與了支援湖北武漢抗擊疫情的任務(wù).

1)若從甲、乙兩醫(yī)院的援鄂醫(yī)護人員中分別隨機選1名,則所選的2名醫(yī)護人員性別相同的概率是

2)若從援鄂的4名醫(yī)護人員中隨機選2名,用列表或畫樹狀圖的方法求出這2名醫(yī)護人員來自同一所醫(yī)院的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A(-2,a),C(3a-101)是反比例函數(shù)x0)圖象上的兩點.

1)求m的值;

2)過點AAPx軸于點P,若直線y=kx+b經(jīng)過點A,且與x軸交于點B,當(dāng)∠PAC=PAB時,求直線AB的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E是邊AD上的一點,將△CDE沿CE折疊得到△CFE,點F恰好落在邊AB上.

1)證明:△AEF∽△BFC

2)若AB=,BC=1,作線段CE的中垂線,交AB于點P,交CD于點Q,連結(jié)PEPC

①求線段DQ的長.

②試判斷△PCE的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了解學(xué)生疫情期間一天在線學(xué)習(xí)時長,進行了一次隨機問卷調(diào)查(每人只能選擇其中一項),并將調(diào)查數(shù)據(jù)整理后繪成如下兩幅不完整的統(tǒng)計圖.請根據(jù)圖中信息解答下列問題:

1)求參與問卷調(diào)查的總?cè)藬?shù).

2)補全條形統(tǒng)計圖,并求出一天在線學(xué)習(xí)“57個小時”的扇形圓心角度數(shù).

3)若該校共有學(xué)生1800名,試估計全校一天在線學(xué)習(xí)“7小時以上”的學(xué)生人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形ABCD中,EAD的中點,以E為頂點作BEF=∠EBC,EFCD于點F

1)求tan∠BEF;

2)求DFCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明是一名健步走運動的愛好者,他用手機軟件記錄了他近期健步走的步數(shù)(單位:萬步),繪制出如下的統(tǒng)計圖①和統(tǒng)計圖②,請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)本次記錄的總天數(shù)為_____________,圖①中m的值為______________

(Ⅱ)求小名近期健步走步數(shù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)樣本數(shù)據(jù),若小明堅持健步走一年(記為365天),試估計步數(shù)為1.1萬步的天數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將四邊形ABCD放在每個小正方形的邊長為1的網(wǎng)格中,點A.B、C、D均落在格點上.

(Ⅰ)計算AD2+DC2+CB2的值等于_____;

(Ⅱ)請在如圖所示的網(wǎng)格中,用無刻度的直尺,畫出一個以AB為一邊的矩形,使該矩形的面積等于AD2+DC2+CB2,并簡要說明畫圖方法(不要求證明).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB△ABC外接圓的直徑,O為圓心,CHAB,垂足為H,且∠PCA=∠ACH, CD平分∠ACB,交⊙O于點D,連接BD,AP=2

1)判斷直線PC是否為⊙O的切線,并說明理由;

2)若∠P=30°,求AC、BC、BD的長.

3)若tan∠ACP=,求⊙O半徑.

查看答案和解析>>

同步練習(xí)冊答案