【題目】已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC
(1)發(fā)現(xiàn):如圖1,當點E在AB上且點C和點D重合時,若點M、N分別是DB、EC的中點,則MN與EC的位置關系是 ,MN與EC的數(shù)量關系是
(2)探究:若把(1)小題中的△AED繞點A旋轉(zhuǎn)一定角度,如圖2所示,連接BD和EC,并連接DB、EC的中點M、N,則MN與EC的位置關系和數(shù)量關系仍然能成立嗎?若成立,請以逆時針旋轉(zhuǎn)45°得到的圖形(圖3)為例給予證明位置關系成立,以順時針旋轉(zhuǎn)45°得到的圖形(圖4)為例給予證明數(shù)量關系成立,若不成立,請說明理由.
【答案】(1);(2)成立,見解析.
【解析】
(1)利用等腰直角三角形的性質(zhì)以及三角形中位線定理得出得出MN與EC的位置關系和MN與EC的數(shù)量關系;
(2)首先得出△EDM≌△FBM(SAS),進而求出△EAC≌△FBC(SAS),即可得出∠ECF=∠FCB+∠BCE=∠ECA+∠BCE=90°,進而得出MN⊥EC,再利用△EDM≌△FBM(AAS),得出,MN與EC的數(shù)量關系.
解:(1),理由如下:
∵當點E在AB上且點C和點D重合時,點M、N分別是DB、EC的中點,
∴MN是三角形BED的中位線,
∴MN∥BE,MN=BE,
∵等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC,
∴BE=EC,∠AED=90°,
∴MN與EC的位置關系是:MN⊥EC,MN與EC的數(shù)量關系是:MN=EC,
故答案為:MN⊥EC,MN=EC;
(2),理由如下:
如下圖,連接EM并延長到F,使EM=MF,連接CM、CF、BF,
∵BM=MD,∠EMD=∠BMF,
∴△EDM≌△FBM(SAS),
∴BF=DE=AE,∠FBM=∠EDM=135°,
∴∠FBC=∠EAC=90°,
而AC=BC,
∴△EAC≌△FBC(SAS),
∴FC=EC, ∠FCB=∠ECA,
∴∠ECF=∠FCB+∠BCE =∠ECA+∠BCE=90°
又點M、N分別是EF、EC的中點
∴MN∥FC,
∴MN⊥EC,
再如下圖所示,連接EM并延長交BC于F,
∵∠AED=∠ACB=90°,
∴DE∥BC,
∴∠DEM=∠BFM,∠EDM=∠MBF,
在△EDM和△FBM中,
,
∴△EDM≌△FBM(AAS),
∴BF=DE=AE,EM=FM,
∴.
科目:初中數(shù)學 來源: 題型:
【題目】已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).
(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是 ;
(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是 ;
(3)△A2B2C2的面積是 平方單位.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是一個橫斷面為拋物線形狀的拱橋,當水面寬(AB)為4m時,拱頂(拱橋洞的最高點)離水面2m.當水面下降1m時,求水面的寬度增加了多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系內(nèi),已知點A(0,6)、點B(8,0),動點P從點A開始在線段AO上以每秒1個單位長度的速度向點O移動,同時動點Q從點B開始在線段BA上以每秒2個單位長度的速度向點A移動,設點P、Q移動的時間為t秒.
(1)求直線AB的解析式;
(2)當t為何值時,△APQ與△AOB相似?
(3)當t為何值時,△APQ的面積為個平方單位?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,點C為 (-1,0).如圖17所示,B點在拋物線圖象上,過點B作BD⊥x軸,垂足為D,且B點橫坐標為-3.
(1)求證:△BDC≌△COA;
(2)求BC所在直線的函數(shù)關系式;
(3)拋物線的對稱軸上是否存在點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,點是以為直徑的上一點,直線與過點的切線相交于,點是的中點,直線交直線于點.
(1)求證:是的切線;
(2)若,,求的半徑.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】設點和是反比例函數(shù)圖象上的兩個點,當<<時,<,則一次函數(shù)的圖象不經(jīng)過的象限是
A.第一象限 B.第二象限 C.第三象限 D.第四象限
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在大課間活動中,體育老師隨機抽取了九年級甲、乙兩班部分女生進行仰臥起坐的測試,并對成績進行統(tǒng)計分析,繪制了頻數(shù)分布表和頻數(shù)直方圖,請你根據(jù)圖表中的信息完成下列問題:
(1)頻數(shù)分布表中a= ,b= ;
(2)將頻數(shù)直方圖補充完整;
(3)如果該校九年級共有女生360人,估計仰臥起坐能夠一分鐘完成30次或30次以上的女學生有多少人?
(4)已知第一組有兩名甲班學生,第四組中只有一名乙班學生,老師隨機從這兩個組中各選一名學生談心得體會,則所選兩人正好都是甲班學生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項點與另一個三角形的直角頂點A重合,若三角形ABC固定,當另一個三角形繞點A旋轉(zhuǎn)時,它的角邊和斜邊所在的直線分別與邊BC交于點E、F,設BF=CE=則關于的函數(shù)圖象大致是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com