【題目】兩個全等的等腰直角三角形,斜邊長為2,按如圖放置,其中一個三角形45°角的項點與另一個三角形的直角頂點A重合,若三角形ABC固定,當另一個三角形繞點A旋轉時,它的角邊和斜邊所在的直線分別與邊BC交于點E、F,設BF=CE=則關于的函數(shù)圖象大致是( )
A.B.C.D.
科目:初中數(shù)學 來源: 題型:
【題目】在Rt△ACB中,∠ACB=90°,點D為AB上一點.
(1)如圖1,若CD⊥AB,求證:CD2=ADDB;
(2)如圖2,若AC=BC,EF⊥CD于H,EF與BC交于E,與AC交于F,且=,求的值;
(3)如圖3,若AC=BC,點H在CD上,且∠AHD=45°,CH=3DH,直接寫出tan∠ACH的值為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】網(wǎng)絡時代,新興詞匯層出不窮.為了解大眾對網(wǎng)絡詞匯的理解,某興趣小組舉行了一個“我是路人甲”的調查活動:選取四個熱詞A:“硬核人生”,B:“好嗨哦”,C:“雙擊666”,D:“杠精時代”在街道上對流動人群進行了抽樣調查,要求被調查的每位只能勾選一個最熟悉的熱詞,根據(jù)調查結果,該小組繪制了如下的兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次調查中,一共調查了 名路人.
(2)補全條形統(tǒng)計圖;
(3)扇形圖中的b= .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】問題:探究函數(shù)y=x+ 的圖象和性質.
小華根據(jù)學習函數(shù)的方法和經(jīng)驗,進行了如下探究,下面是小華的探究過程,請補充完整:
(1)函數(shù)的自變量x的取值范圍是:____;
(2)如表是y與x的幾組對應值,請將表格補充完整:
x | … | ﹣3 | ﹣2 | ﹣ | ﹣1 | 1 | 2 | 3 | … | |||
y | … | ﹣3 | ﹣3 |
| ﹣3 | ﹣4 | 4 | 3 | … |
(3)如圖,在平面直角坐標系中描點并畫出此函數(shù)的圖象;
(4)進一步探究:結合函數(shù)的圖象,寫出此函數(shù)的性質(一條即可).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著天氣的逐漸炎熱(如圖1),遮陽傘在我們的日常生活中隨處可見如圖2所示,遮陽傘立柱OA垂直于地面,當將遮陽傘撐開至OD位置時,測得∠ODB=45°,當將遮陽傘撐開至OE位置時,測得∠OEC=30°,且此時遮陽傘邊沿上升的豎直高度BC為20cm,求若當遮陽傘撐開至OE位置時傘下陰涼面積最大,求此時傘下半徑EC的長.(結果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,、、的對邊分別是、、,一條直線與邊相交于點,與邊相交于點.
(1)如圖①,若將分成周長相等的兩部分,求的值;(用、、表示)
(2)如圖②,若,,,將分成周長、面積相等的兩部分,求的值;
(3)如圖③,若將分成周長、面積相等的兩部分,且,則、、滿足什么關系?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC,AB=AC,BD是∠ABC的角平分線,EF是BD的中垂線,且分別交BC于點E,交AB于點F,交BD于點K,連接DE,DF.
(1)證明:DE//AB;
(2)若CD=3,求四邊形BEDF的周長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線與軸交于點與軸交于點,,且點的坐標為.
(1)求該拋物線的解析式.
(2)如圖1,若點是線段上的一動點,過點作,交于,連接,求面積的最大值.
(3)如圖2,若直線與線段交于點,與線段交于點,是否存在,,使得為直角三角形,若存在,請求出的值;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com