【題目】如圖,⊙O的兩條弦AB、CD交于點(diǎn)E,OE平分∠BED.

(1)求證:AB=CD;

(2)若∠BED=60°,EO=2,求DE﹣AE的值.

【答案】1)證明見(jiàn)解析;(2

【解析】試題(1)過(guò)點(diǎn)O作AB、CD的垂線,垂足為M、N,由角平分線的性質(zhì),可得OM=ON,然后由弦心距相等可得弦相等,即AB=CD;

(2)由(1)可得,OM=ON,AB=CD,OMAB,ONCD,由垂徑定理可得DN=CN=AM=BM,由HL可證RtEONRtEOM,繼而可得NE=ME,

從而得AE=CE, DE-AE=DE-CE=DN+NE-CE=CN+NE-CE=2NE,在RtEON中,由NEO=30°,OE=2,即可求出NE.

試題解析:(1)過(guò)點(diǎn)OAB、CD的垂線,垂足為M、N,如圖1,

OE平分BED,且OMAB,ONCD,OM=ONAB=CD;

(2)如圖2所示,由(1)知,OM=ON,AB=CDOMAB,ONCD,DN=CN=AM=BM,在RtEONRtEOM中,RtEONRtEOM(HL),NE=ME,CDDNNE=ABBMME,即AE=CE,DEAE=DECE=DN+NECE=CN+NECE=2NE,∵∠BED=60°,OE平分BED,∴∠NEO= BED=30°,ON=OE=1,在RtEON中,由勾股定理得:NE==DEAE=2NE=2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)不透明的袋子中裝有三個(gè)完全相同的小球,分別標(biāo)有數(shù)字3、4、5.從袋子中隨機(jī)取出一個(gè)小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個(gè)小球,用小球上的數(shù)字作為個(gè)位上的數(shù)字,這樣組成一個(gè)兩位數(shù),試問(wèn):按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個(gè)位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫(huà)樹(shù)狀圖法加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是長(zhǎng)為10m,傾斜角為37°的自動(dòng)扶梯,平臺(tái)BD與大樓CE垂直,且與扶梯AB的長(zhǎng)度相等,在B處測(cè)得大樓頂部C的仰角為65°,求大樓CE的高度(結(jié)果保留整數(shù)).

(參考數(shù)據(jù):sin37°≈,tan37°≈sin65°≈,tan65°≈

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長(zhǎng)為1的正方形OA1B1C的對(duì)角線A1C和OB1交于點(diǎn)M1;以M1A1為對(duì)角線作第二個(gè)正方形A2A1B2M,對(duì)角線A1M1和A2B2交于點(diǎn)M2;以M2A1為對(duì)角線作第三個(gè)正方形A3A1B3M2,對(duì)角線A1M2和A3B3交于點(diǎn)M3;…,依此類推,這樣作的第6個(gè)正方形對(duì)角線交點(diǎn)的橫坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某學(xué)校為了增強(qiáng)學(xué)生體質(zhì),決定開(kāi)放以下球類活動(dòng)項(xiàng)目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學(xué)生最喜歡哪一種活動(dòng)項(xiàng)目,隨機(jī)抽取了部分學(xué)生進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制成了兩幅不完整的統(tǒng)計(jì)圖(如圖,圖),請(qǐng)回答下列問(wèn)題:

1)這次被調(diào)查的學(xué)生共有多少人?

2)請(qǐng)你將條形統(tǒng)計(jì)圖補(bǔ)充完整;

3)若該校共有學(xué)生1900人,請(qǐng)你估計(jì)該校喜歡D項(xiàng)目的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了解中考體育科目訓(xùn)練情況,某縣從全縣九年級(jí)學(xué)生中隨機(jī)抽取了部分學(xué)生進(jìn)行了一次中考體育科目測(cè)試(把測(cè)試結(jié)果分為四個(gè)等級(jí):A級(jí):優(yōu)秀;B級(jí)良好;C級(jí)及格;D級(jí)不及格),并將測(cè)試結(jié)果繪制成了如下兩幅不完整的統(tǒng)計(jì)圖.請(qǐng)根據(jù)統(tǒng)計(jì)圖中的信息解答下列問(wèn)題.

(1)本次抽樣測(cè)試的學(xué)生人數(shù)是   

(2)圖1中∠α的度數(shù)是多少度?并直接把圖2條形統(tǒng)計(jì)圖補(bǔ)充完整;

(3)該縣九年級(jí)學(xué)生3500名,如果全部參加這次中考體育科目測(cè)試,請(qǐng)你估計(jì)不及格的人數(shù)多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,有一塊長(zhǎng)為21m、寬為10m的矩形空地,計(jì)劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道,且人行通道的寬度不能超過(guò)3米.

(1)如果兩塊綠地的面積之和為90m2,求人行通道的寬度;

(2)能否改變?nèi)诵型ǖ赖膶挾,使得每塊綠地的寬與長(zhǎng)之比等于3:5,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線的圖象與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C,點(diǎn)D為拋物線的頂點(diǎn).

1)求AB、C的坐標(biāo);

2)點(diǎn)M為線段AB上一點(diǎn)(點(diǎn)M不與點(diǎn)A、B重合),過(guò)點(diǎn)Mx軸的垂線,與直線AC交于點(diǎn)E,與拋物線交于點(diǎn)P,過(guò)點(diǎn)PPQ∥AB交拋物線于點(diǎn)Q,過(guò)點(diǎn)QQN⊥x軸于點(diǎn)N.若點(diǎn)P在點(diǎn)Q左邊,當(dāng)矩形PQMN的周長(zhǎng)最大時(shí),求△AEM的面積;

3)在(2)的條件下,當(dāng)矩形PMNQ的周長(zhǎng)最大時(shí),連接DQ.過(guò)拋物線上一點(diǎn)Fy軸的平行線,與直線AC交于點(diǎn)G(點(diǎn)G在點(diǎn)F的上方).FG=DQ,求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=110°,點(diǎn)E是菱形ABCD內(nèi)一點(diǎn),連結(jié)CE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)110°,得到線段CF,連結(jié)BE,DF,若∠E=86°,求∠F的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案