【題目】已知,在矩形ABCD中,AB=4,BC=2,點(diǎn)M為邊BC的中點(diǎn),點(diǎn)P為邊CD上的動(dòng)點(diǎn)(點(diǎn)P異于C,D兩點(diǎn)).連接PM,過(guò)點(diǎn)P作PM的垂線與射線DA相交于點(diǎn)E(如圖),設(shè)CP=x,DE=y.
(1)寫(xiě)出y與x之間的關(guān)系式;
(2)若點(diǎn)E與點(diǎn)A重合,則x的值為
(3)是否存在點(diǎn)P,使得點(diǎn)D關(guān)于直線PE的對(duì)稱(chēng)點(diǎn)D′落在邊AB上?若存在,求x的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】
(1)y=﹣x2+4x
(2)2+ 或2﹣
(3)解:存在,過(guò)P作PH⊥AB于點(diǎn)H,

∵點(diǎn)D關(guān)于直線PE的對(duì)稱(chēng)點(diǎn)D′落在邊AB上,

∴PD′=PD=4﹣x,ED′=ED=y=﹣x2+4x,EA=AD﹣ED=x2﹣4x+2,∠PD′E=∠D=90°,

在Rt△D′PH中,PH=2,D′P=DP=4﹣x,

根據(jù)勾股定理得:D′H= = ,

∵∠ED′A=180°﹣90°﹣∠PD′H=90°﹣∠PD′H=∠D′PH,∠PD′E=∠PHD′=90°,

∴△ED′A∽△D′PH,

,即 = =x= ,

整理得:2x2﹣4x+1=0,

解得:x=

當(dāng)x= 時(shí),y=﹣( 2+4× = >2,

此時(shí),點(diǎn)E在邊DA的延長(zhǎng)線上,D關(guān)于直線PE的對(duì)稱(chēng)點(diǎn)不可能落在邊AB上,所以舍去.

當(dāng)x= 時(shí),y=﹣( 2+4× = <2,此時(shí),點(diǎn)E在邊AD上,符合題意.

所以當(dāng)x= 時(shí),點(diǎn)D關(guān)于直線PE的對(duì)稱(chēng)點(diǎn)D′落在邊AB上


【解析】解:(1)∵PE⊥PM,∴∠EPM=90°, ∴∠DPE+∠CPM=90°,
又矩形ABCD,∴∠D=90°,
∴∠DPE+∠DEP=90°,
∴∠CPM=∠DEP,又∠C=∠D=90°,
∴△CPM∽△DEP,
,
又CP=x,DE=y,AB=DC=4,∴DP=4﹣x,
又M為BC中點(diǎn),BC=2,∴CM=1,

則y=﹣x2+4x;
所以答案是:y=﹣x2+4x;(2)當(dāng)E與A重合時(shí),DE=AD=2,
∵△CPM∽△DEP,
,
又CP=x,DE=2,CM=1,DP=4﹣x,
,即x2﹣4x+2=0,
解得:x=2+ 或x=2﹣ ,
則x的值為2+ 或2﹣
所以答案是:2+ 或2﹣ ;
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解矩形的性質(zhì)的相關(guān)知識(shí),掌握矩形的四個(gè)角都是直角,矩形的對(duì)角線相等,以及對(duì)翻折變換(折疊問(wèn)題)的理解,了解折疊是一種對(duì)稱(chēng)變換,它屬于軸對(duì)稱(chēng),對(duì)稱(chēng)軸是對(duì)應(yīng)點(diǎn)的連線的垂直平分線,折疊前后圖形的形狀和大小不變,位置變化,對(duì)應(yīng)邊和角相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在3×3的方格紙中,點(diǎn)A、B、C、D、E、F分別位于如圖所示的小正方形的頂點(diǎn)上.
(1)從A、D、E、F四個(gè)點(diǎn)中任意取一點(diǎn),以所取的這一點(diǎn)及點(diǎn)B、C為頂點(diǎn)畫(huà)三角形,則所畫(huà)三角形是等腰三角形的概率是
(2)從A、D、E、F四個(gè)點(diǎn)中先后任意取兩個(gè)不同的點(diǎn),以所取的這兩點(diǎn)及點(diǎn)B、C為頂點(diǎn)畫(huà)四邊形,求所畫(huà)四邊形是平行四邊形的概率是(用樹(shù)狀圖或列表法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】今年我市體育中考的現(xiàn)場(chǎng)選測(cè)項(xiàng)目中有一項(xiàng)是“排球30秒對(duì)墻墊球”,為了了解某學(xué)校九年級(jí)學(xué)生此項(xiàng)目平時(shí)的訓(xùn)練情況,隨機(jī)抽取了該校部分九年級(jí)學(xué)生進(jìn)行測(cè)試,根據(jù)測(cè)試結(jié)果,制作了如下尚不完整的頻數(shù)分布表:

組別

墊球個(gè)數(shù)x(個(gè))

頻數(shù)(人數(shù))

頻率

1

10≤x<20

5

0.10

2

20≤x<30

a

0.18

3

30≤x<40

20

b

4

40≤x<50

16

0.32

合計(jì)

1


(1)表中a= , b=;
(2)這個(gè)樣本數(shù)據(jù)的中位數(shù)在第組;
(3)下表為≤體育與健康≥中考察“排球30秒對(duì)墻墊球”的中考評(píng)分標(biāo)準(zhǔn),若該校九年級(jí)有500名學(xué)生,請(qǐng)你估計(jì)該校九年級(jí)學(xué)生在這一項(xiàng)目中得分在7分以上(包括7分)學(xué)生約有多少人? 排球30秒對(duì)墻墊球的中考評(píng)分標(biāo)準(zhǔn)

分值

10

9

8

7

6

5

4

3

2

1

排球(個(gè))

40

36

33

30

27

23

19

15

11

7

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解 如圖1,△ABC中,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,剪掉重復(fù)部分;…;將余下部分沿∠BnAnC的平分線AnBn+1折疊,點(diǎn)Bn與點(diǎn)C重合,無(wú)論折疊多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.
小麗展示了確定∠BAC是△ABC的好角的兩種情形.情形一:如圖2,沿等腰三角形ABC頂角∠BAC的平分線AB1折疊,點(diǎn)B與點(diǎn)C重合;情形二:如圖3,沿∠BAC的平分線AB1折疊,剪掉重復(fù)部分;將余下部分沿∠B1A1C的平分線A1B2折疊,此時(shí)點(diǎn)B1與點(diǎn)C重合.
探究發(fā)現(xiàn)

(1)△ABC中,∠B=2∠C,經(jīng)過(guò)兩次折疊,∠BAC是不是△ABC的好角?(填“是”或“不是”).
(2)小麗經(jīng)過(guò)三次折疊發(fā)現(xiàn)了∠BAC是△ABC的好角,請(qǐng)?zhí)骄俊螧與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系.根據(jù)以上內(nèi)容猜想:若經(jīng)過(guò)n次折疊∠BAC是△ABC的好角,則∠B與∠C(不妨設(shè)∠B>∠C)之間的等量關(guān)系為 應(yīng)用提升
(3)小麗找到一個(gè)三角形,三個(gè)角分別為15°、60°、105°,發(fā)現(xiàn)60°和105°的兩個(gè)角都是此三角形的好角. 請(qǐng)你完成,如果一個(gè)三角形的最小角是4°,試求出三角形另外兩個(gè)角的度數(shù),使該三角形的三個(gè)角均是此三角形的好角.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一個(gè)不透明的口袋里裝有白、紅、黑三種顏色的小球,其中白球2只,紅球1只,黑球1只,它們除了顏色之外沒(méi)有其它區(qū)別,從袋中隨機(jī)地摸出1只球,記錄下顏色后放回?cái)噭,再摸出第二只球并記錄顏色,求兩次都摸出白球的概率?/span>

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了進(jìn)一步推進(jìn)海南國(guó)際旅游島建設(shè),?谑凶2012年4月1日起實(shí)施《?谑歇(jiǎng)勵(lì)旅行社開(kāi)發(fā)客源市場(chǎng)暫行辦法》,第八條規(guī)定:“旅行社引進(jìn)會(huì)議規(guī)模達(dá)到200人以上,入住本市A類(lèi)旅游飯店,每次會(huì)議獎(jiǎng)勵(lì)2萬(wàn)元;入住本市B類(lèi)旅游飯店,每次會(huì)議獎(jiǎng)勵(lì)1萬(wàn)元.”某旅行社5月份引進(jìn)符合獎(jiǎng)勵(lì)規(guī)定的會(huì)議共18次,得到28萬(wàn)元獎(jiǎng)金,求此旅行社引進(jìn)符合獎(jiǎng)勵(lì)規(guī)定的入住A類(lèi)和B類(lèi)旅游飯店的會(huì)議各多少次?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形ABCD中,∠A=60°,點(diǎn)P、Q分別在邊AB、BC上,且AP=BQ.
(1)求證:△BDQ≌△ADP;
(2)已知AD=3,AP=2,求cos∠BPQ的值(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c與x軸交于A(1,0),B(﹣3,0)兩點(diǎn).

(1)求該拋物線的解析式;
(2)設(shè)(1)中的拋物線交y軸與C點(diǎn),在該拋物線的對(duì)稱(chēng)軸上是否存在點(diǎn)Q,使得△QAC的周長(zhǎng)最。咳舸嬖,求出Q點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(1)中的拋物線上的第二象限上是否存在一點(diǎn)P,使△PBC的面積最大?若存在,求出點(diǎn)P的坐標(biāo)及△PBC的面積最大值;若沒(méi)有,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫(huà),斜坡可以用一次函數(shù)y= x刻畫(huà).

(1)請(qǐng)用配方法求二次函數(shù)圖象的最高點(diǎn)P的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo);
(3)連接拋物線的最高點(diǎn)P與點(diǎn)O、A得△POA,求△POA的面積;
(4)在OA上方的拋物線上存在一點(diǎn)M(M與P不重合),△MOA的面積等于△POA的面積.請(qǐng)直接寫(xiě)出點(diǎn)M的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案