【題目】已知:如圖,在RtABC中,∠C=90°,有一內(nèi)接正方形DEFC,連接AFDEG,若AC=15,BC=10.

(1)求正方形DEFC的邊長;(2)求EG的長.

【答案】(1)6;(2)

【解析】試題分析:(1)首先由正方形的對邊平行,以及四條邊都相等,可得DE=DC,DE∥BC,即可得△ADE∽△ACB,又由相似三角形的對應邊成比例,從而求得正方形的邊長;

(2)根據(jù)(1)中的方法,易得∴,,利用方程即可求得EG的長.

試題解析:(1)∵四邊形DECF是正方形,

DE=DC,DEBC,

∴△ADE∽△ACB,

,

設正方形DEFC的邊長為x,

DE=DC=x,AD=AC﹣x=15﹣x,

解得:x=6.

∴正方形DEFC的邊長為6;

(2)∵四邊形DECF是正方形,且邊長為6,

EF=6,EFAD,

∴△EGF∽△DGA,

,

EG=y,則DG=6﹣y,

AD=AC﹣DC=15﹣6=9,

,

解得:y=

EG=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB兩個小機器人,自甲處同時出發(fā)相背而行,繞直徑為整數(shù)米的圓周上運動,15分鐘內(nèi)相遇7次,如果A的速度每分鐘增加6米,則AB15分鐘內(nèi)相遇9次,問圓周直徑至多是多少米?至少是多少米?(取π=3.14)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義新運算:對于任意實數(shù)a,b,都有aba(ab)1,等式右邊是通常的加法、減法及乘法運算,比如:252×(25)12×(3)1=-61=-5.

(1)(2) 3的值;

(2)3x的值小于13,求x的取值范圍,并在如圖所示的數(shù)軸上表示出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,在四邊形ABCD中,∠D=37°,點EBC邊上一點,沿AE折疊,點B落在ADB′處,若B′ECD,則∠B=_________°

2)如圖2,在四邊形ABCD中,ABCD,EBC邊上一點,沿AE折疊,點B落在ADB′處,點FBC邊上一點,沿DF折疊,點C落在ADC′處.B′EC′F有何位置關系?為什么?

3如圖3,在四邊形ABCD中,∠B=D=90°EBC邊上一點,沿AE折疊,點B落在ADB′處,點FAD邊上一點,沿CF折疊,點D落在BCD′處.試問:AECF有何位置關系?說明理由.

4)在四邊形ABCD中,點EBC邊上一點,沿AE折疊.

①若點B落在四邊形ABCD內(nèi)B′處(如圖4),則∠1,2,BADB之間的數(shù)量關系為________

②若點B落在四邊形ABCDB′處(如圖5),則∠12,BADB之間的數(shù)量關系為 ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,每個小正方形的邊長為1個單位,每個小方格的頂點叫格點.

⑴畫出△ABC向右平移4個單位后得到的△A1B1C1

⑵圖中ACA1C1的關系是: ;

⑶畫出△ABCAB邊上的中線CD

⑷△ACD的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學開展了手機伴我健康行主題活動.他們隨機抽取部分學生進行手機使用目的每周使用手機時間的問卷調(diào)查,并繪制成如圖的統(tǒng)計圖。已知查資料人人數(shù)是40人。

請你根據(jù)以上信息解答以下問題

1)在扇形統(tǒng)計圖中,玩游戲對應的圓心角度數(shù)是_______________。

2)補全條形統(tǒng)計圖

3)該校共有學生1200人,估計每周使用手機時間在2小時以上(不含2小時)的人數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形ABCD的頂點C與原點O重合,點B在y軸的正半軸上,點A在反比例函數(shù)(k>0,x>0)的圖象上,點D的坐標為(,2).

(1)求k的值;

(2)若將菱形ABCD沿x軸正方向平移,當菱形的一個頂點恰好落在函數(shù)(k>0,x>0)的圖象上時,求菱形ABCD平移的距離;

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校計劃購買甲、乙兩種樹苗共1000株用以綠化校園,甲種樹苗每株25元,乙種樹苗每株30元,通過調(diào)查了解,甲,乙兩種樹苗成活率分別是90%和95%.

(1)若購買這種樹苗共用去28000元,則甲、乙兩種樹苗各購買多少株?

(2)要使這批樹苗的總成活率不低于92%,則甲種樹苗最多購買多少株?

(3)在(2)的條件下,應如何選購樹苗,使購買樹苗的費用最低?并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB =AC=2,B = 40°,點D在線段BC上運動(不與點BC重合),連接AD,作∠ADE = 40°,DE交線段AC于點E

(1)當∠BDA = 115°時,∠BAD= °,DEC = °,當點D從點B向點C運動時,∠BDA逐漸變 (填”) .

(2)當DC等于多少時,ABD≌△DCE?請說明理由

(3)在點D的運動過程中,是否存在ADE是等腰三角形?若存在,請直接寫出此時∠BDA的度數(shù);若不存在,請說明理由

查看答案和解析>>

同步練習冊答案