【題目】數(shù)軸上點(diǎn)A、C表示的數(shù)為﹣14、4,甲、乙兩點(diǎn)分別從A、C兩點(diǎn)出發(fā),同時(shí)相向而行,已知甲的速度為4個(gè)單位/秒,乙的速度為3個(gè)單位/秒.
(1)求相遇點(diǎn)表示的數(shù);
(2)數(shù)軸上有一點(diǎn)B表示的數(shù)為﹣4,甲到達(dá)點(diǎn)C后調(diào)頭返回,求運(yùn)動(dòng)多少秒后,甲、乙兩點(diǎn)到B點(diǎn)的距離相等.
【答案】(1)相遇點(diǎn)表示的數(shù)為 ;(2)運(yùn)動(dòng)秒或2秒或秒或18秒后,甲、乙兩點(diǎn)到B點(diǎn)的距離相等.
【解析】
(1)先根據(jù)數(shù)軸的定義求出相遇時(shí),甲、乙分別走過(guò)的路程,再根據(jù)時(shí)間相等建立方程求解即可;
(2)先求出甲到達(dá)C的時(shí)間,再分甲到達(dá)C之前和甲到達(dá)C后調(diào)頭返回兩種情況,然后利用數(shù)軸的定義確定甲、乙所表示的數(shù),最后根據(jù)到B點(diǎn)的距離相等建立方程求解即可.
(1)設(shè)相遇點(diǎn)表示的數(shù)為x
由題意得:
解得:
答:相遇點(diǎn)表示的數(shù)為;
(2)甲到達(dá)C的時(shí)間為:(秒)
設(shè)運(yùn)動(dòng)時(shí)間為t秒
當(dāng)時(shí),甲表示的數(shù)為,乙表示的數(shù)為
由題意得:,即
化簡(jiǎn)得:或
解得:或;
當(dāng)時(shí),甲表示的數(shù)為,乙表示的數(shù)為
由題意得:,即
化簡(jiǎn)得:或
解得:或
答:運(yùn)動(dòng)秒或2秒或秒或18秒后,甲、乙兩點(diǎn)到B點(diǎn)的距離相等.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如果過(guò)拋物線與y的交點(diǎn)作y軸的垂線與該拋物線有另一個(gè)交點(diǎn),并且這兩點(diǎn)與該拋物線的頂點(diǎn)構(gòu)成正三角形,那么我們稱這個(gè)拋物線為正三角拋物線.
(1)拋物線 正三角拋物線;(填“是”或“不是”)
(2)如圖,已知二次函數(shù)(m > 0)的圖像是正三角拋物線,它與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)E在y軸上,當(dāng)∠AEB=2∠ABE時(shí),求出點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】元旦期間,某超市對(duì)出售、兩種商品開展元旦促銷活動(dòng),活動(dòng)方案有如下兩種:(同一種商品不可同時(shí)參與兩種活動(dòng))
商品 | |||
標(biāo)價(jià)(單位:元) | |||
方案一 | 每件商品出售價(jià)格 | 按標(biāo)價(jià)降價(jià) | 按標(biāo)價(jià)降價(jià) |
方案二 | 若所購(gòu)商品超過(guò)件(不同商品可累計(jì))時(shí),每件商品按標(biāo)價(jià)降價(jià)后出售 |
(1)某單位購(gòu)買商品件,商品件,共花費(fèi)元,試求的值;
(2)在(1)求出的值的條件下,若某單位購(gòu)買商品件(為正整數(shù)),購(gòu)買商品的件數(shù)比商品件數(shù)的倍還多一件,請(qǐng)問(wèn)該單位選擇哪種方案才能獲得最大優(yōu)惠?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=10,∠BAD的平分線交BC于點(diǎn)E,交DC的延長(zhǎng)線于點(diǎn)F,BG⊥AE,垂足為G,AG=2.5,則△CEF的周長(zhǎng)為
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探究題:
(一)小明在玩積木時(shí),把三個(gè)正方體積木擺成一定的形狀,正面看如圖①所示:
(1)若圖中的△DEF為直角三角形,∠DEF=90°,正方形P的面積為9,正方形Q的面積為15,則正方形M的面積為________;
(2)若P的面積為36cm,Q的面積為64cm,同時(shí)M的面積為100cm,則△DEF為________三角形.
(二)圖形變化:如圖②,分別以直角三角形ABC(∠ACB=90°)的三邊為直徑向三角形外作三個(gè)半圓,你能找出這三個(gè)半圓的面積S1、S2、S3之間有什么關(guān)系嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,邊長(zhǎng)為2的等邊三角形AEF的頂點(diǎn)E、F分別在BC和CD上,下列結(jié)論:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=.
其中正確的序號(hào)是 (把你認(rèn)為正確的都填上).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(-1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(-3,0)和(-2,0)之間,其部分圖象如圖,則以下結(jié)論:①b2-4ac<0;②當(dāng)x>-1時(shí)y隨x增大而減;③a+b+c<0;④若方程ax2+bx+c-m=0沒(méi)有實(shí)數(shù)根,則m>2;⑤3a+c<0.其中,正確結(jié)論的序號(hào)是________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】河西中學(xué)九年級(jí)共有9個(gè)班,300名學(xué)生,學(xué)校要對(duì)該年級(jí)學(xué)生數(shù)學(xué)學(xué)科學(xué)業(yè)水平測(cè)試成績(jī)進(jìn)行抽樣分析,請(qǐng)按要求回答下列問(wèn)題:
收集數(shù)據(jù)
(1)若從所有成績(jī)中抽取一個(gè)容量為36的樣本,以下抽樣方法中最合理的是 .
①在九年級(jí)學(xué)生中隨機(jī)抽取36名學(xué)生的成績(jī);
②按男、女各隨機(jī)抽取18名學(xué)生的成績(jī);
③按班級(jí)在每個(gè)班各隨機(jī)抽取4名學(xué)生的成績(jī).
整理數(shù)據(jù)
(2)將抽取的36名學(xué)生的成績(jī)進(jìn)行分組,繪制頻數(shù)分布表和成績(jī)分布扇形統(tǒng)計(jì)圖如下.請(qǐng)根據(jù)圖表中數(shù)據(jù)填空:
①C類和D類部分的圓心角度數(shù)分別為 °、 °;
②估計(jì)九年級(jí)A、B類學(xué)生一共有 名.
成績(jī)(單位:分) | 頻數(shù) | 頻率 |
A類(80~100) | 18 |
|
B類(60~79) | 9 |
|
C類(40~59) | 6 |
|
D類(0~39) | 3 |
|
分析數(shù)據(jù)
(3)教育主管部門為了解學(xué)校教學(xué)情況,將河西、復(fù)興兩所中學(xué)的抽樣數(shù)據(jù)進(jìn)行對(duì)比,得下表:
學(xué)校 | 平均數(shù)(分) | 極差(分) | 方差 | A、B類的頻率和 |
河西中學(xué) | 71 | 52 | 432 | 0.75 |
復(fù)興中學(xué) | 71 | 80 | 497 | 0.82 |
你認(rèn)為哪所學(xué)校本次測(cè)試成績(jī)較好,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某校教學(xué)樓AB的后面有一建筑物CD,在距離CD的正后方30米的觀測(cè)點(diǎn)P處,以22°的仰角測(cè)得建筑物的頂端C恰好擋住教學(xué)樓的頂端A,而在建筑物CD上距離地面3米高的E處,測(cè)得教學(xué)樓的頂端A的仰角為45°,求教學(xué)樓AB的高度.(參考數(shù)據(jù):sin22°≈ ,cos22°≈,tan22°≈)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com