【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦,AB與CD交于點(diǎn)M,將弧CD沿著CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,鏈接PC。
(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為弧ADB的中點(diǎn),在PC延長(zhǎng)線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E,交弧BC于點(diǎn)F(F與B、C不重合)。問(wèn)GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說(shuō)明理由。
【答案】(1)2;(2)證明過(guò)程見(jiàn)解析;(3)定值為8.
【解析】
試題分析:(1)連接OC,根據(jù)折疊圖形的性質(zhì)得出OM=1,根據(jù)勾股定理的性質(zhì)得出CD的長(zhǎng)度;(2)首先根據(jù)勾股定理求出PC的長(zhǎng)度,然后根據(jù)勾股定理的逆定理得出切線;(3)連接GA、AF、GB,根據(jù)題意得出△AGE與△FGA相似,從而得出GE·GF=,然后根據(jù)等腰直角三角形的性質(zhì)得出答案.
試題解析:(1)如答圖1,連接OC ∵沿CD翻折后,A與O重合 ∴OM=OA=1,CD⊥OA
∵OC=2 ∴CD=2CM=2=2
(2)∵PA=OA=2,AM=OM=1,CM= 又∵CMP=∠OMC=90° ∴PC==2
∵OC=2,PO=4 ∴ ∴∠PCO=90° ∴PC與☉O相切
(3)GE·GF為定值,理由如下: 如答圖2,連接GA、AF、GB ∵G為中點(diǎn) ∴
∴∠BAG=∠AFG ∵∠AGE=∠FGA ∴△AGE∽△FGA ∴
∴GE·GF= ∵AB為直徑,AB=4 ∴∠BAG=∠ABG=45° ∴AG=2 ∴GE·GF==8
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一元二次方程x2-3x+5=0的根的情況是( )
A. 有兩個(gè)不相等的實(shí)根B. 有兩個(gè)相等的實(shí)根C. 無(wú)實(shí)數(shù)根D. 不能確定
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖.點(diǎn)D是Rt△ABC斜邊BC的中點(diǎn),⊙O是△ABD的外接圓,交AC于點(diǎn)F. DE平分∠ADC,交AC于點(diǎn)E.
求證:DE是⊙O的切線;
若CE=4,DE=2,求⊙O的直徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=8,BC=12,若點(diǎn)P在AD邊上,連接BP、PC,△BPC是以PB為腰的等腰三角形,則PB的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC,按如下步驟作圖:
①分別以A、C為圓心,以大于 AC的長(zhǎng)為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過(guò)C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
(1)求證:四邊形ADCE是菱形;
(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長(zhǎng)為18時(shí),求四邊形ADCE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,對(duì)角線AC與BD相交于點(diǎn)O,MN過(guò)點(diǎn)O且與邊AD、BC分別交于點(diǎn)M和點(diǎn)N.
(1)請(qǐng)你判斷OM和ON的數(shù)量關(guān)系,并說(shuō)明理由;
(2)過(guò)點(diǎn)D作DE∥AC交BC的延長(zhǎng)線于點(diǎn)E,當(dāng)AB=6,AC=8時(shí),求△BDE的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系內(nèi)與點(diǎn)P(﹣2,1)關(guān)于原點(diǎn)的對(duì)稱點(diǎn)的坐標(biāo)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com