【題目】如圖,在△ABC中,∠B=90°,AB=BC,∠BCM是△ABC的外角,∠BAC、∠BCM的平分線交于點D,AD與BC交于點E,若BE=2,則AEDE=____.
【答案】8+8.
【解析】
作EF⊥AC于F,由角平分線的性質(zhì)得出FE=BE=2,證出△CEF是等腰直角三角形,再根據(jù)勾股定理表示出AE,證出DE=DC,∠CDE=45°,作EM⊥CD于M,則∠MED=45°,作∠ECN=∠CEM=22.5°,則CN=EN,∠CNM=45°,則△MDE和△MCN是等腰直角三角形,得出ME=MD,MC=MN,設MC=MN=x,在Rt△MCE中,由勾股定理得出方程,解出x,即可得到答案.
作EF⊥AC于F,如圖所示:
∵AD是∠BAC的平分線,∠B=90°,EF⊥AC于F,
∴FE=BE=2,
∵AB=BC,
∴∠BAC=∠ACB=45°,
∴∠BCM=135°,△CEF是等腰直角三角形,
∴FC=FE=2,CE=FE=2,
∴AB=BC=BE+CE=2+2,
∴AE===2,
∵∠BAC、∠BCM的平分線交于點D,
∴∠CAE=∠BAC=22.5°,∠DCE=∠BCM=67.5°,
∵∠DEC=∠CAE+∠ACB=67.5°=∠DCE,
∴DE=DC,∠CDE=45°,
作EM⊥CD于M,則∠MED=45°,
∴∠CEM=67.5°-45°=22.5°,
作∠ECN=∠CEM=22.5°,
則CN=EN,∠CNM=45°,
則△MDE和△MCN是等腰直角三角形,
∴ME=MD,MC=MN,
設MC=MN=x,則EN=CN=x,
∴MD=ME=x+x,
在Rt△MCE中,由勾股定理得:x2+(x+x)2=(2)2,
解得:x=,
∴DE=DC=(2+)x=(2+),
∴AEDE=2(2+)=2(2+)=8+8;
故答案為:8+8.
科目:初中數(shù)學 來源: 題型:
【題目】 已知:直線y=-x-4分別交x、y軸于A、C兩點,點B為線段AC的中點,拋物線y=ax2+bx經(jīng)過A、B兩點,
(1)求該拋物線的函數(shù)關系式;
(2)以點B關于x軸的對稱點D為圓心,以OD為半徑作⊙D,連結(jié)AD、CD,問在拋物線上是否存在點P,使S△ACP=2S△ACD?若存在,請求出所有滿足條件的點P的坐標;若不存在,請說明理由;
(3)在(2)的條件下,若E為⊙D上一動點(不與A、O重合),連結(jié)AE、OE,問在x軸上是否存在點Q,使∠ACQ:∠AEO=2:3?若存在,請求出所有滿足條件的點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小李通過對某地區(qū)1998年至2000年快餐公司發(fā)展情況的調(diào)查,制成了該地區(qū)快餐公司個數(shù)情況的條形圖如圖所示,和快餐公司盒飯年銷量的平均數(shù)情況條形圖,利用這些信息解答下列問題:
(1)1999年該地區(qū)銷售盒飯共 萬盒;
(2)該地區(qū)盒飯銷量最大的年份是 個,這一年的年銷量是 萬盒;
(3)這三年中該地區(qū)每年平均銷售盒飯多少萬盒?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面內(nèi)直角坐標系中,直線y=-x+6分別于x軸、y軸交于A、B兩點,點C與點A關于y軸對稱,點E為線段OB上一動點(不與O、B重合),CE的延長線與AB交于點D,過A、D、E三點的圓與y軸交于點F
(1)求A、B、C三點的坐標
(2)求證:BE·EF=DE·AE
(3)若tan∠BAE=,求點F的坐標
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2013年9月23日強臺風“天兔”登錄深圳,伴隨著就是狂風暴雨。梧桐山山坡上有一棵與水平面垂直的大樹,臺風過后,大樹被刮傾斜后折斷倒在山坡上,樹的頂部恰好接觸到坡面(如圖所示)。已知山坡的坡角∠AEF=23°,量得樹干的傾斜角為∠BAC=38°,大樹被折斷部分和坡面所成的角∠ADC=60°, AD=3m。
(1)求∠DAC的度數(shù);
(2)求這棵大樹折斷前的高度。(結(jié)果保留根號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,G為AD上一點,連接BG,CG,作CE⊥BG于點E,連接ED交GC于點F.
(1)如圖1,若點G為AD的中點,則線段BG與CG有何數(shù)量關系?請說理由.
(2)如圖2,若點E恰好為BG的中點,且AB=3,AG=k(0<k<3),求的值(用含k的代數(shù)式表示);
(3)在(2)有條件下,若M、N分別為GC、EC上的任意兩點,連接NF、NM,當k=時,求NF+NM的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某電視臺攝制組乘船往返于A碼頭和B碼頭進行拍攝,在A、B兩碼頭間設置拍攝中心C.在往返過程中,假設船在A、B、C處均不停留,船離開B碼頭的距離s(千米)與航行的時間t(小時)之間的函數(shù)關系式如圖所示.根據(jù)圖象信息,解答下列問題:
(1)求船從B碼頭返回A碼頭時的速度及返回時s關于t的函數(shù)表達式.
(2)求水流的速度.
(3)若拍攝中心C設在離A碼頭12千米處,攝制組在拍攝中心分兩組拍攝,其中一組乘橡皮艇漂流到B碼頭處,另一組同時乘船到達A碼頭后馬上返回,求兩攝制組相遇時離拍攝中心C的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】樂山獨峰,倚天獨立.身高1.6米的小明(GF)和身高1.8米的爸爸(HE)前去游覽,山腰處的一棵綴滿紅葉的楓樹(A)吸引了他們的目光,已知小明的仰角為30°,爸爸的仰角為45°,若小明與爸爸之間(EF)相距6米,求楓樹(A)與地面的距離(AD)為多少米?(參考數(shù)據(jù):1.41,1.73,結(jié)果保留一位小數(shù).)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com