【題目】2011年徐州市全年實現(xiàn)地區(qū)生產(chǎn)總值3551.65億元,按可比價格計算,比上年增長13.5%,經(jīng)濟平穩(wěn)較快增長.其中,第一產(chǎn)業(yè)、第二產(chǎn)業(yè)、第三產(chǎn)業(yè)增加值與增長率情況如圖所示:
根據(jù)圖中信息,寫成下列填空:
(1)第三產(chǎn)業(yè)的增加值為億元:
(2)第三產(chǎn)業(yè)的增長率是第一產(chǎn)業(yè)增長率的倍(精確到0.1);
(3)三個產(chǎn)業(yè)中第產(chǎn)業(yè)的增長最快.

【答案】
(1)1440.06
(2)3.2
(3)二
【解析】解:(1)由左圖可知,第三產(chǎn)業(yè)的增加值為1440.06億元, 所以答案是:1440.06;(2)由右圖可知,14.50%÷4.50%≈3.2,
所以答案是:3.2;(3)由右圖可知,三個產(chǎn)業(yè)的增長率依次為:4.50%,14.60%,14.50%,
由此可知,三個產(chǎn)業(yè)中第二產(chǎn)業(yè)的增長最快,
所以答案是:二.
【考點精析】利用條形統(tǒng)計圖對題目進行判斷即可得到答案,需要熟知能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,直線y=﹣ x與反比例函數(shù)y= 的圖象交于關(guān)于原點對稱的A,B兩點,已知A點的縱坐標是3.

(1)求反比例函數(shù)的表達式;
(2)將直線y=﹣ x向上平移后與反比例函數(shù)在第二象限內(nèi)交于點C,如果△ABC的面積為48,求平移后的直線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,點E,F(xiàn)是平行四邊形ABCD對角線BD上的點,BF=DE,求證:AE=CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為2,如果將線段BD繞著點B旋轉(zhuǎn)后,點D落在CB的延長線上的D’處,那么tan∠BAD’等于.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=-x2+(m-1)x+m(m>1)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C(0,3).

(1)求拋物線的解析式;
(2)點D和點C關(guān)于拋物線的對稱軸對稱,點F在直線AD上方的拋物線上,F(xiàn)G⊥AD于G,F(xiàn)H//x軸交直線AD于H,求△FGH的周長的最大值;
(3)點M是拋物線的頂點,直線l垂直于直線AM,與坐標軸交于P、Q兩點,點R在拋物線的對稱軸上,得△PQR是以PQ為斜邊的等腰直角三角形,求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,A、B、C、D為矩形的四個頂點,AD=4cm,AB=dcm.動點E、F分別從點D、B出發(fā),點E以1cm/s的速度沿邊DA向點A移動,點F以1cm/s的速度沿邊BC向點C移動,點F移動到點C時,兩點同時停止移動.以EF為邊作正方形EFGH,點F出發(fā)xs時,正方形EFGH的面積為ycm2 . 已知y與x的函數(shù)圖象是拋物線的一部分,如圖2所示.請根據(jù)圖中信息,解答下列問題:
(1)自變量x的取值范圍是;
(2)d= , m= , n=
(3)F出發(fā)多少秒時,正方形EFGH的面積為16cm2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】有四部不同的電影,分別記為A,B,C,D.
(1)若甲從中隨機選擇一部觀看,則恰好是電影A的概率是;
(2)若甲從中隨機選擇一部觀看,乙也從中隨機選擇一部觀看,求甲、乙兩人選擇同一部電影的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長相同的小正方形組成的網(wǎng)格中,點A、B、C、D都在這些小正方形的頂點上,AB、CD相交于點P,則tan∠APD的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖△ABC中,AB=AC=10厘米,BC=12厘米,D是BC的中點,點P從B出發(fā),以a厘米/秒(a>0)的速度沿BA勻速向點A運動,點Q同時以1厘米/秒的速度從D出發(fā),沿DB勻速向點B運動,其中一個動點到達端點時,另一個動點也隨之停止運動,設它們運動的時間為t秒.
(1)若a=2,△BPQ∽△BDA,求t的值;
(2)設點M在AC上,四邊形PQCM為平行四邊形. ①若a= ,求PQ的長;
②是否存在實數(shù)a,使得點P在∠ACB的平分線上?若存在,請求出a的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案