【題目】在△ABC中,BA=BC,∠ABC=α(0°<α<180°),點P為直線BC上一動點(不與點B,C重合),連接AP,將線段PA繞點P順時針旋轉(zhuǎn)α度得到線段PQ,連接CQ.

(1)當(dāng)α=90°,且點P在線段BC上時,過P作PF∥AC交直線AB于點F,如圖1,圖中與△APF全等的是哪個三角形,∠ACQ的度數(shù)

(2)當(dāng)點P在BC延長線上,AB:AC=m:n時,如圖2,試求線段BP與CQ的比值;

(3)當(dāng)點P在直線BC上,α=60°,∠APB=30°,CP=4時,請直接寫出線段CQ的長.

【答案】(1)△PQC,90;(2);(3)線段CQ的長為2或8.

【解析】

(1)依據(jù)條件判定△APF≌△PQC,可得∠PCQ=∠AFP=135°,依據(jù)∠ACB=45°,可得∠ACQ=90°;

(2)過PPFAC,交BA的延長線于F,判定△AFP≌△PCQ,可得FPCQ,再根據(jù)△ABC∽△FBP,可得,進(jìn)而得出 ;

(3)分兩種情況進(jìn)行討論:點PCB的延長線上,點PBC的延長線上,分別依據(jù)全等三角形的性質(zhì)以及含30°角的直角三角形的性質(zhì),即可得到線段CQ的長.

(1)如圖①,∵∠ABC=90°,AB=CB,

∴△ABC是等腰直角三角形,

∵PF∥AC,

∴∠BPF=∠BFP=45°,

∴△BPF是等腰直角三角形,

∴BF=BP,

∴AF=CP,

由旋轉(zhuǎn)可得,AP=PQ,∠APQ=90°,而∠BPF=45°,

∴∠QPC=45°﹣∠APF,

又∵∠PAF=∠PFB﹣∠APF=45°﹣∠APF,

∴∠PAF=∠QPC,

∴△APF≌△PQC(SAS)

∴∠PCQ=∠AFP=135°,

又∵∠ACB=45°,

∴∠ACQ=90°,

故答案為:△PQC,90;

(2)如圖,過P作PF∥AC,交BA的延長線于F,則,

又∵AB=BC,

∴AF=CP,

又∵∠FAP=∠ABC+∠APB=α+∠APB,∠CPQ=∠APQ+∠APB=α+∠APB,

∴∠FAP=∠CPQ,

由旋轉(zhuǎn)可得,PA=PQ,

∴△AFP≌△PCQ(SAS),

∴FP=CQ,

∵PF∥AC,

∴△ABC∽△FBP,

;

(3)如圖,當(dāng)P在CB的延長線上時,

∵∠CPQ=∠APQ﹣∠APB=60°﹣30°=30°,

∴∠APC=∠QPC,

又∵AP=QP,PC=PC,

∴△APC≌△QPC(SAS),

∴CQ=AC,

又∵BA=BC,∠ABC=60°,

∴△ABC是等邊三角形,

∴∠ABC=60°,∠BAP=∠ABC﹣∠APB=30°,

∴BP=AB=BC=PC=2,

∴QC=AC=BC=2;

如圖,當(dāng)P在BC的延長線上時,連接AQ,

由旋轉(zhuǎn)可得,AP=QP,∠APQ=∠ABC=60°,

∴△APQ是等邊三角形,

∴AQ=PQ,∠APQ=60°=∠AQP,

又∵∠APB=30°,∠ACB=60°,

∴∠CAP=30°,∠CPQ=90°,

∴∠CAP=∠APA,

∴AC=PC,且AQ=PQ,CQ=CQ

∴△ACQ△PCQ(SSS)

∴∠AQC=∠PQC=∠AQP=30°,

∴Rt△PCQ中,CQ=2CP=8.

綜上所述,線段CQ的長為2或8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價比每臺甲種品牌空調(diào)的進(jìn)價高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2臺.

(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價;

(2)該商場擬用不超過16000元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價為2500元/臺,乙種品牌空調(diào)的售價為3500元/臺.請您幫該商場設(shè)計一種進(jìn)貨方案,使得在售完這10臺空調(diào)后獲利最大,并求出最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年9月熱播的專題片《輝煌中國﹣﹣圓夢工程》展示的中國橋、中國路等超級工程展現(xiàn)了中國現(xiàn)代化進(jìn)程中的偉大成就,大家紛紛點贊“厲害了,我的國!”片中提到我國已成為擁有斜拉橋最多的國家,世界前十座斜拉橋中,中國占七座,其中蘇通長江大橋(如圖1所示)主橋的主跨長度在世界斜拉橋中排在前列.在圖2的主橋示意圖中,兩座索塔及索塔兩側(cè)的斜拉索對稱分布,大橋主跨BD的中點為E,最長的斜拉索CE長577m,記CE與大橋主梁所夾的銳角∠CEDα,那么用CE的長和α的三角函數(shù)表示主跨BD長的表達(dá)式應(yīng)為BD_____m).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC內(nèi)接于O,AB是O的直徑.PC是O的切線,C為切點,PDAB于點D,交AC于點E.

(1)求證:∠PCE=∠PEC;

(2)若AB=10,ED=,sinA=,求PC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在我國古代數(shù)學(xué)著作《九章算術(shù)》中記載了這樣一個問題:今有圓材,埋在壁中,不知大小,以鋸鋸之,深一寸,鋸道長一尺,問徑幾何?用現(xiàn)代語言表述為:如圖,AB為⊙O的直徑,弦CDAB于點EAE = 1寸,CD = 10寸,求直徑AB的長.請你解答這個問題.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了在中考體育考試中取得好成績,每位同學(xué)都認(rèn)真訓(xùn)練,體育成績也大幅提高,這是從我校某次模擬考試中隨機(jī)抽取了50名同學(xué)的一分鐘跳繩次數(shù),并繪制出部分頻數(shù)分布表和部分頻數(shù)分布直方圖,如下圖所示:

請結(jié)合圖表完成下列問題:

(1)表中的a   ;

(2)請把頻數(shù)分布直方圖補(bǔ)充完整;

(3)若初三年級共有800名學(xué)生,中考體考一分鐘跳繩次數(shù)大于等于185即為滿分20分,根據(jù)以上信息,請你估算全年級學(xué)生一分鐘跳繩次數(shù)得滿分的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)解直角三角形以后,重慶八中數(shù)學(xué)興趣小組測量了旗桿的高度.如圖,某一時刻,旗桿AB的影子一部分落在平臺上的影長BC6米,落在斜坡上的影長CD4米,ABBC,同一時刻,光線與旗桿的夾角為37°,斜坡的坡角為30°,旗桿的高度AB約為( )米.(參考數(shù)據(jù):sin37°≈0.6,cos37°≈0.8,tan37°≈0.75, ≈1.73)

A. 10.61 B. 10.52 C. 9.87 D. 9.37

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,邊長分別為48的兩個正方形ABCDCEFG并排放在一起,連結(jié)BD并延長交EG于點T,交FG于點P,則GT的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進(jìn),1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進(jìn)的速度,沿著東南方向航行,結(jié)果在小島C處與乙船相遇.假設(shè)乙船的速度和航向保持不變,求:

(1)港口A與小島C之間的距離;

(2)甲輪船后來的速度.

查看答案和解析>>

同步練習(xí)冊答案