【題目】已知,如圖,

1)請以AB、BC為鄰邊用兩種不同的方法畫平行四邊形ABCD,并說明此畫法的合理性(不寫作法,保留作圖痕跡.);

2)在上述畫出的平行四邊形中,若,,,求對角線BD的長.

【答案】解:(1)詳見解析;(2

【解析】

1)可以根據(jù)兩組對邊相等的四邊形是平行四邊形和對角線互相平分的四邊形是平行四邊形作圖;
2)先解直角三角形求出AC的長,據(jù)此可得AO的長,利用勾股定理求出BO的長,繼而可得BD

解:(1)如圖1,作AD=BC,CD=AB
則四邊形ABCD是平行四邊形;

如圖2,作AC的垂直平分線交AC中點O,連接BO,并延長BOD,使BO=DO,連接AD、CD即可得.
AO=COBO=DO
∴四邊形ABCD是平行四邊形.
2)∵ABAC,
∴△ABC是直角三角形,
AB=2,∠ABC=60°
BC=4,AC=2,
AO=AC=,
BO==,
BD=2BO=2

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,拋物線y=x﹣4x軸交于點A、B,與y 軸相交于點C.

(1)求直線BC的解析式;

(2)將直線BC向上平移后經(jīng)過點A得到直線l:y=mx+n,點D在直線l上,若以A、B、C、D為頂點的四邊形是平行四邊形,求出點D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+ACE=90°

1)請判斷ABCD的位置關(guān)系并說明理由;

2)如圖2,當(dāng)∠E=90°ABCD的位置關(guān)系保持不變,移動直角頂點E,使∠MCE=ECD,當(dāng)直角頂點E點移動時,問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;

3)如圖3,P為線段AC上一定點,點Q為直線CD上一動點且ABCD的位置關(guān)系保持不變,當(dāng)點Q在射線CD上運動時(點C除外)∠CPQ+CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的頂點A、B分別落在x軸、y軸的正半軸上,頂點C在第一象限,BCx軸平行.已知BC=2,ABC的面積為1

1)求點C的坐標(biāo).

2)將ABC繞點C順時針旋轉(zhuǎn)90°ABC旋轉(zhuǎn)到A1B1C的位置,求經(jīng)過點B1的反比例函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB和直線CD相交于點O,OF平分∠COE,過點OOGOF.

1)若∠AOE=80°,∠COF=22°,則∠BOD= ;

2)若∠COE=40°,試說明:OG平分∠DOE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A、B兩地在數(shù)軸上相距20米,A地在數(shù)軸上表示的點為-8,小烏龜從A地出發(fā)沿數(shù)軸往B地方向前進,第一次前進1米,第二次后退2米,第三次再前進3米,第四次又后退4米,……,按此規(guī)律行進,(數(shù)軸的一個單位長度等于1米)

1)求B地在數(shù)軸上表示的數(shù);

2)若B地在原點的左側(cè),經(jīng)過第五次行進后小烏龜?shù)竭_點P,第六次行進后到達點Q,則點P和點Q到點A的距離相等嗎?請說明理由;

3)若B地在原點的右側(cè),那么經(jīng)過30次行進后,小烏龜?shù)竭_的點與點B之間的距離是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上點A表示的數(shù)為﹣3,點B表示的數(shù)為3,若在數(shù)軸上存在點P,使得AP+BP=m,則稱點P為點AB“m級精致點,例如,原點O表示的數(shù)為0,則AO+BO=3+3=6,則稱點O為點A和點B“6級精致點,根據(jù)上述規(guī)定,解答下列問題:

1)若點C軸在數(shù)軸上表示的數(shù)為﹣5,點C為點A和點B“m級精致點,則m=

2)若點D是數(shù)軸上點A和點B“8級精致點,求點D表示的數(shù);

3)如圖,數(shù)軸上點E和點F分別表示的數(shù)是﹣24,若點G是點E和點F“m級精致點,且滿足GE=3GF,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了保護視力,學(xué)校開展了全校性的視力保健活動,活動前,隨機抽取部分學(xué)生,檢查他們的視力,結(jié)果如圖所示(數(shù)據(jù)包括左端點不包括右端點,精確到0.1);活動后,再次檢查這部分學(xué)生的視力,結(jié)果如表所示

分組

頻數(shù)

4.0≤x<4.2

2

4.2≤x<4.4

3

4.4≤x<4.6

5

4.6≤x<4.8

8

4.8≤x<5.0

17

5.0≤x<5.2

5

(1)求活動所抽取的學(xué)生人數(shù);

(2)若視力達到4.8及以上為達標(biāo),計算活動前該校學(xué)生的視力達標(biāo)率;

(3)請選擇適當(dāng)?shù)慕y(tǒng)計量,從兩個不同的角度評價視力保健活動的效果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD邊長為3,點EAB邊上且BE=1,點P,Q分別是邊BCCD的動點(均不與頂點重合),當(dāng)四邊形AEPQ的周長取最小值時,四邊形AEPQ的面積是( 。

A. 3 B. 5 C. 4 D. 1

查看答案和解析>>

同步練習(xí)冊答案