【題目】如圖1,CE平分∠ACD,AE平分∠BAC,∠EAC+ACE=90°

1)請(qǐng)判斷ABCD的位置關(guān)系并說明理由;

2)如圖2,當(dāng)∠E=90°ABCD的位置關(guān)系保持不變,移動(dòng)直角頂點(diǎn)E,使∠MCE=ECD,當(dāng)直角頂點(diǎn)E點(diǎn)移動(dòng)時(shí),問∠BAE與∠MCD否存在確定的數(shù)量關(guān)系?并說明理由;

3)如圖3P為線段AC上一定點(diǎn),點(diǎn)Q為直線CD上一動(dòng)點(diǎn)且ABCD的位置關(guān)系保持不變,當(dāng)點(diǎn)Q在射線CD上運(yùn)動(dòng)時(shí)(點(diǎn)C除外)∠CPQ+CQP與∠BAC有何數(shù)量關(guān)系?猜想結(jié)論并說明理由.

【答案】1ABCD,理由見解析;(2)∠BAE+MCD=90°,理由見解析;(3)∠BAC=PQC+QPC,理由見解析

【解析】

1)先根據(jù)CE平分∠ACD,AE平分∠BAC得出∠BAC=2EAC,∠ACD=2ACE,再由∠EAC+ACE=90°可知∠BAC+ACD=180,故可得出結(jié)論;
2)過EEFAB,根據(jù)平行線的性質(zhì)可知EFABCD,∠BAE=AEF,∠FEC=DCE,故∠BAE+ECD=90°,再由∠MCE=ECD即可得出結(jié)論;
3)根據(jù)ABCD可知∠BAC+ACD=180°,∠QPC+PQC+PCQ=180°,故∠BAC=PQC+QPC

1)∵CE平分∠ACDAE平分∠BAC,
∴∠BAC=2EAC,∠ACD=2ACE,
∵∠EAC+ACE=90°,
∴∠BAC+ACD=180°
ABCD;
2)∠BAE+MCD=90°;
EEFAB,


ABCD,
EFABCD,
∴∠BAE=AEF,∠FEC=DCE
∵∠E=90°,
∴∠BAE+ECD=90°,
∵∠MCE=ECD
∴∠BAE+MCD=90°;
3)∵ABCD,
∴∠BAC+ACD=180°,
∵∠QPC+PQC+PCQ=180°
∴∠BAC=PQC+QPC

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將ABC沿一確定方向平移得到A1B1C1,點(diǎn)B的對(duì)應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是 (  )

A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等邊△ABC沿射線BC向右平移到△DCE的位置,連接AD、BD,則下列結(jié)論:①AD=BC②BD、AC互相平分;四邊形ACED是菱形.其中正確的個(gè)數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠ADB60°,∠CDB50°

1)若ADBCABCD,求∠ABC的度數(shù);

2)若∠A70°,請(qǐng)寫出圖中平行的線段,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O.

(1)如圖1,E,G分別是OB,OC上的點(diǎn),CE與DG的延長(zhǎng)線相交于點(diǎn)F.若DF⊥CE,求證:OE=OG;

(2)如圖2,H是BC上的點(diǎn),過點(diǎn)H作EH⊥BC,交線段OB于點(diǎn)E,連結(jié)DH交CE于點(diǎn)F,交OC于點(diǎn)G.若OE=OG,

①求證:∠ODG=∠OCE;

②當(dāng)AB=1時(shí),求HC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若關(guān)于x的一元二次方程ax2+bx10a≠0)有一根為x2019,則一元二次方程ax12+bx1)=1必有一根為(  )

A.B.2020C.2019D.2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1x+k2+k0

1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

2)若ABC的兩邊ABAC的長(zhǎng)是這個(gè)方程的兩個(gè)實(shí)數(shù)根.第三邊BC的長(zhǎng)為5,

①若ABC是以BC為斜邊的直角三角形,求k的值.

②若ABC是等腰三角形,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,

1)請(qǐng)以ABBC為鄰邊用兩種不同的方法畫平行四邊形ABCD,并說明此畫法的合理性(不寫作法,保留作圖痕跡.);

2)在上述畫出的平行四邊形中,若,,求對(duì)角線BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小天家、小亮家、學(xué)校依次在同一條筆直的公路旁(各自到公路的距離忽略不計(jì)),每天早上7點(diǎn)整小天都會(huì)從家出發(fā)以每分鐘60米的速度走到距他家600米的小亮家,然后兩人以小天同樣的速度準(zhǔn)時(shí)在730到校早讀.某日早上7點(diǎn)過,小亮在家等小天的時(shí)候突然想起今天輪到自己值日掃地了,所以就以每分鐘60米的速度先向?qū)W校走去,后面打算再和小天解釋,小天來到小亮家一看小亮不在家,立刻想到小亮今天是值日生(停留及思考時(shí)間忽略不計(jì)),于是他就以每分鐘100米的速度去追小亮,兩人之間的距離y(米)及小亮出發(fā)的時(shí)間x(分)之間的函數(shù)關(guān)系如下圖所示.請(qǐng)問當(dāng)小天追上小亮?xí)r離學(xué)校還有_____米.

查看答案和解析>>

同步練習(xí)冊(cè)答案