【題目】如圖,O是直線AC上一點(diǎn),OB是一條射線,OD平分∠AOB,OE在∠BOC內(nèi)部,∠BOE=∠EOC,∠DOE=70°,求∠EOC的度數(shù).
【答案】80°
【解析】
設(shè)∠BOE=x°,則∠EOC=2x°,由∠DOE=70°,OD平分∠AOB知,∠AOD=∠DOB=70°﹣x°,再根據(jù)∠AOD+∠DOB+∠BOE+∠EOC=180°,列出關(guān)于x的方程求解即可.
解:如圖,設(shè)∠BOE=x°,
∵∠BOE=∠EOC,
∴∠EOC=2x°,
∵OD平分∠AOB,
∴∠AOD=∠DOB=70°﹣x°,
∵∠AOD+∠DOB+∠BOE+∠EOC=180°,
∴70°﹣x°+70°﹣x°+x°+2x°=180°,
∴x°=40°,
∴∠EOC=80°.
“點(diǎn)睛”本題主要考查角的計(jì)算及角平分線的定義,熟練掌握角平分線的定義及性質(zhì)是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,四邊形ABCD是菱形,AD=5,過(guò)點(diǎn)D作AB的垂線DH,垂足為H,交對(duì)角線AC于M,連接BM,且AH=3.
(1)求證:DM=BM;
(2)求MH的長(zhǎng);
(3)如圖2,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),沿折線ABC方向以2個(gè)單位/秒的速度向終點(diǎn)C勻速運(yùn)動(dòng),設(shè)△PMB的面積為S(S≠0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t秒,求S與t之間的函數(shù)關(guān)系式;
(4)在(3)的條件下,當(dāng)點(diǎn)P在邊AB上運(yùn)動(dòng)時(shí)是否存在這樣的 t值,使∠MPB與∠BCD互為余角,若存在,則求出t值,若不存,在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若x=1,y=,則x2+4xy+4y2的值是( )
A. 2 B. 4 C. 32 D. 12
【答案】B
【解析】解析:x2+4xy+4y2=(x+2y)2==4.故選B.
【題型】單選題
【結(jié)束】
9
【題目】下列因式分解,正確的是( )
A. x2y2-z2=x2(y+z)(y-z) B. -x2y+4xy-5y=-y(x2+4x+5)
C. (x+2)2-9=(x+5)(x-1) D. 9-12a+4a2=-(3-2a)2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】解下列方程:
(1) 2(x+1)=3(x+1); (2)4-2(x-3)=x-5;
(3) =-1; (4)3x-=.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,鄭某把一塊邊長(zhǎng)為a m的正方形的土地租給李某種植,他對(duì)李某說(shuō):“我把你這塊地的一邊減少5 m,另一邊增加5 m,繼續(xù)租給你,你也沒(méi)有吃虧,你看如何”.李某一聽(tīng),覺(jué)得自己好像沒(méi)有吃虧,就答應(yīng)了.同學(xué)們,你們覺(jué)得李某有沒(méi)有吃虧?請(qǐng)說(shuō)明理由.
【答案】李某吃虧了,理由見(jiàn)解析.
【解析】試題分析:計(jì)算陰影部分面積和原正方形面積作比較.
試題解析:
解:李某吃虧了.理由如下:
∵(a+5)(a-5)=a2-25<a2,
∴李某少種了25 m2地,李某吃虧了.
【題型】解答題
【結(jié)束】
20
【題目】計(jì)算:(1)992-102×98;
(2)[x(x2y2-xy)-y(x2-x3y)]÷x2y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)先化簡(jiǎn),再求值:a(a-2b)+(a+b)2,其中a=-1,b=;
(2)若x2-5x=3,求(x-1)(2x-1)-(x+1)2+1的值.
【答案】(1)原式= 2a2+b2=2+2=4;(2)原式=4.
【解析】試題分析:(1)利用完全平方公式展開(kāi),化簡(jiǎn),代入求值. (2) 利用完全平方公式展開(kāi),化簡(jiǎn),整體代入求值.
解:(1)原式=a2-2ab+a2+2ab+b2=2a2+b2.
當(dāng)a=-1,b=時(shí),原式=2+2=4.
(2)原式=2x2-3x+1-(x2+2x+1)+1=x2-5x+1=3+1=4.
【題型】解答題
【結(jié)束】
22
【題目】已知化簡(jiǎn)(x2+px+8)(x2-3x+q)的結(jié)果中不含x2項(xiàng)和x3項(xiàng).
(1)求p,q的值.
(2)x2-2px+3q是否是完全平方式?如果是,請(qǐng)將其分解因式;如果不是,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某工程隊(duì)由甲乙兩隊(duì)組成,承包我市河?xùn)|東街改造工程,規(guī)定若干天完成,已知甲單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多32天,乙隊(duì)單獨(dú)完成這項(xiàng)工程所需時(shí)間比規(guī)定時(shí)間多12天,如果甲乙兩隊(duì)先合作20天,剩下的甲單獨(dú)做,則延誤兩天完成,那么規(guī)定時(shí)間是多少天?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為響應(yīng)市政府“創(chuàng)建國(guó)家森林城市”的號(hào)召,某小區(qū)計(jì)劃購(gòu)進(jìn)A、B兩種樹(shù)苗已知2棵A種樹(shù)苗和3棵B種樹(shù)苗共需270元,3棵A種樹(shù)苗和6棵B種樹(shù)苗共需480元.
、B兩種樹(shù)苗的單價(jià)分別是多少元?
該小區(qū)計(jì)劃購(gòu)進(jìn)兩種樹(shù)苗共28棵,總費(fèi)用不超過(guò)1550元,問(wèn)最多可以購(gòu)進(jìn)A種樹(shù)苗多少棵.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com