【題目】探究:如圖,已知直線l1l2,直線l3和直線l1、l2交于點C和D,直線l3有一點P,

(1)若點P在C、D之間運動時,問PAC,APB,PBD之間的關(guān)系是否發(fā)生變化,并說明理由.

(2)若點P在C、D兩點的外側(cè)運動時(P點與點C、D不重合),試探索PAC,APB,PBD之間的關(guān)系又是如何?并說明理由.

【答案】1APB=PAC+PBD,理由見解析;2當(dāng)點P在C、D兩點的外側(cè)運動,且在l1上方時,PBD=PAC+APB;當(dāng)點P在C、D兩點的外側(cè)運動,且在l2下方時,PAC=PBD+APB.理由見解析.

【解析】

試題分析:1過點P作PEl1根據(jù)l1l2得出PEl2l1,從而得出PAC=1,PBD=2,然后得出答案;2分點P在C、D兩點的外側(cè)運動,在l1上方和在l2下方時兩種情況,分別根據(jù)1的方法得出答案.

試題解析:1當(dāng)點P在C、D之間運動時,APB=PAC+PBD.理由如下:

過點P作PEl1,

l1l2,

PEl2l1,

∴∠PAC=1,PBD=2,

∴∠APB=1+2=PAC+PBD;

2)當(dāng)點P在C、D兩點的外側(cè)運動,且在l1上方時,PBD=PAC+APB.理由如下:

l1l2,

∴∠PEC=PBD,

∵∠PEC=PAC+APB,

∴∠PBD=PAC+APB.

)當(dāng)點P在C、D兩點的外側(cè)運動,且在l2下方時,PAC=PBD+APB.理由如下:

l1l2,

∴∠PED=PAC,

∵∠PED=PBD+APB,

∴∠PAC=PBD+APB.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程(x22=3x2)的根是( 。

A. 2 B. 2 C. 2或-2 D. 25

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】探究與發(fā)現(xiàn):

探究一:我們知道,三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和.那么,三角形的一個內(nèi)角與它不相鄰的兩個外角的和之間存在何種數(shù)量關(guān)系呢?

已知:如圖1,FDC與ECD分別為ADC的兩個外角,試探究A與FDC+ECD的數(shù)量關(guān)系.

探究二:三角形的一個內(nèi)角與另兩個內(nèi)角的平分線所夾的鈍角之間有何種關(guān)系?

已知:如圖2,在ADC中,DP、CP分別平分ADC和ACD,試探究P與A的數(shù)量關(guān)系.

探究三:若將ADC改為任意四邊形ABCD呢?

已知:如圖3,在四邊形ABCD中,DP、CP分別平分ADC和BCD,試?yán)蒙鲜鼋Y(jié)論探究P與A+B的數(shù)量關(guān)系.

探究四:若將上題中的四邊形ABCD改為六邊形ABCDEF(圖4)呢?

請直接寫出P與A+B+E+F的數(shù)量關(guān)系:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】九(1)班同學(xué)為了解2011年某小區(qū)家庭月均用水情況,隨機(jī)調(diào)查了該小區(qū)部分家庭,并將調(diào)查數(shù)據(jù)進(jìn)行如下整理.請解答以下問題:

(1)把上面的頻數(shù)分布表和頻數(shù)分布直方圖補(bǔ)充完整;

(2)若該小區(qū)用水量不超過15t的家庭占被調(diào)查家庭總數(shù)的百分比;

(3)若該小區(qū)有1000戶家庭,根據(jù)調(diào)查數(shù)據(jù)估計,該小區(qū)月均用水量超過20t的家庭大約有多少戶?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的計算正確的是( )
A.6a-5a=1
B.a+2a2=2a3
C.-(a-b)= -a+b
D.2(a+b) =2a+b

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】5x+1的平方根是±11,x的值是 ( )

A. -24 B. 2

C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,DEF是ABC經(jīng)過某種變換得到的圖形,點A與點D,點B與點E,點C與點F分別是對應(yīng)點,觀察點與點的坐標(biāo)之間的關(guān)系,解答下列問題:

1分別寫出點A與點D,點B與點E,點C與點F的坐標(biāo),并說說對應(yīng)點的坐標(biāo)有哪些特征;

2若點Pa+3,4-b與點Q2a,2b-3也是通過上述變換得到的對應(yīng)點,求a,b的值.

3求圖中ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在下列條件中:①∠A+B=C;②∠A﹕∠B﹕∠C=1﹕2﹕3;③∠A=B=C;④∠A=B=2C;⑤∠A=B=C,能確定ABC為直角三角形的條件有( )

A. 2個 B. 3個 C. 4個 D. 5個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對于任何整數(shù)m,多項式(4m+5)2-9一定能(  )

A. 8整除 B. m整除

C. m-91整除 D. 2m-1整除

查看答案和解析>>

同步練習(xí)冊答案