定義:對(duì)于任意的三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若滿足,則稱這個(gè)三角形為勾股三角形.
(1)已知某一勾股三角形的三個(gè)內(nèi)角度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(2)如圖,△ABC是⊙O的內(nèi)接三角形,AB=,AC=,BC=2,BE是⊙O的直徑,交AC于D.         
 
①求證:△ABC是勾股三角形;
②求DE的長(zhǎng).

(1)102;(2)①過B作BH⊥AC于H,設(shè)AH=x,則CH=,在Rt△ABH和Rt△CBH中,根據(jù)勾股定理即可求得,所以,則可得,再根據(jù)勾股定理的逆定理即可證得結(jié)論;②

解析試題分析:(1)由三角形的內(nèi)角和、、xy=2160可得關(guān)于x、y、z的方程組,即可求得結(jié)果;
(2)①過B作BH⊥AC于H,設(shè)AH=x,則CH=,在Rt△ABH和Rt△CBH中,根據(jù)勾股定理即可求得,所以,則可得,再根據(jù)勾股定理的逆定理即可證得結(jié)論;②連接CE,則,再根據(jù)圓周角定理可得,即得BC=CE=2,,過D作DK⊥AB于K,設(shè)KD=h,則,由,即可求得結(jié)果.
(1)由題意可得:
由(3)得: 代入(2)得:
把(1)代入得:
(2)①過B作BH⊥AC于H,設(shè)AH=x,則CH=

Rt△ABH中,,Rt△CBH中,
解得: 所以,
所以,                            
因?yàn)椋?img src="http://thumb.zyjl.cn/pic5/tikupic/7e/7/t3i6l.png" style="vertical-align:middle;" /> 所以,△ABC是勾股三角形
②連接CE,則,又BE是直徑,所以,
所以,BC=CE=2,
過D作DK⊥AB于K,設(shè)KD=h,則


所以,
所以,
考點(diǎn):圓的綜合題
點(diǎn)評(píng):此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2007•東城區(qū)一模)我們給出如下定義:如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c.
(1)若∠A=2∠B,且∠A=60°,求證:a2=b(b+c).
(2)如果對(duì)于任意的倍角三角形ABC(如圖),其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?請(qǐng)證明你的結(jié)論;
(3)試求出一個(gè)倍角三角形的三條邊的長(zhǎng),使這三條邊長(zhǎng)恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

學(xué)習(xí)了勾股定理的逆定理,我們知道:在一個(gè)三角形中,如果兩邊的平方和等于第三邊的平方,那么這個(gè)三角形為直角三角形.類似地,我們定義:對(duì)于任意的三角形,設(shè)其三個(gè)角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個(gè)三角形為勾股三角形.
(1)根據(jù)“勾股三角形”的定義,請(qǐng)你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
(2)已知某一勾股三角形的三個(gè)內(nèi)角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(3)如圖,△ABC內(nèi)接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直徑BE交AC于點(diǎn)D.
①求證:△ABC是勾股三角形;
②求DE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2014屆浙江溫州市八年級(jí)第二學(xué)期開學(xué)考試數(shù)學(xué)試卷(解析版) 題型:解答題

定義:對(duì)于任意的三角形,設(shè)其三個(gè)內(nèi)角的度數(shù)分別為x°、y°和z°,若滿足,則稱這個(gè)三角形為勾股三角形.

(1)已知某一勾股三角形的三個(gè)內(nèi)角度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;

(2)如圖,△ABC是⊙O的內(nèi)接三角形,AB=,AC=,BC=2,BE是⊙O的直徑,交AC于D.         

 

①求證:△ABC是勾股三角形;

②求DE的長(zhǎng).

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年北京市東城區(qū)中考數(shù)學(xué)一模試卷(解析版) 題型:解答題

我們給出如下定義:如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的2倍,我們稱這樣的三角形為“倍角三角形”.在△ABC中,∠A、∠B、∠C所對(duì)的邊分別為a、b、c.
(1)若∠A=2∠B,且∠A=60°,求證:a2=b(b+c).
(2)如果對(duì)于任意的倍角三角形ABC(如圖),其中∠A=2∠B,關(guān)系式a2=b(b+c)是否仍然成立?請(qǐng)證明你的結(jié)論;
(3)試求出一個(gè)倍角三角形的三條邊的長(zhǎng),使這三條邊長(zhǎng)恰為三個(gè)連續(xù)的正整數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案