【題目】如圖,已知是一個銳角,以點為圓心,任意長為半徑畫弧,分別交、于點、,再分別以點、為圓心,大于長為半徑畫弧,兩弧交于點,畫射線.過點作,交射線于點,過點作,交于點.設(shè),,則________.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在菱形ABCD中,∠BAD=,E為對角線AC上的一點(不與A,C重合),將射線EB繞點E順時針旋轉(zhuǎn)角之后,所得射線與直線AD交于F點.試探究線段EB與EF的數(shù)量關(guān)系.
小宇發(fā)現(xiàn)點E的位置,和的大小都不確定,于是他從特殊情況開始進行探究.
(1)如圖1,當==90°時,菱形ABCD是正方形.小宇發(fā)現(xiàn),在正方形中,AC平分∠BAD,作EM⊥AD于M,EN⊥AB于N.由角平分線的性質(zhì)可知EM=EN,進而可得,并由全等三角形的性質(zhì)得到EB與EF的數(shù)量關(guān)系為 .
(2)如圖2,當=60°,=120°時,
①依題意補全圖形;
②請幫小宇繼續(xù)探究(1)的結(jié)論是否成立.若成立,請給出證明;若不成立,請舉出反例說明;
(3)小宇在利用特殊圖形得到了一些結(jié)論之后,在此基礎(chǔ)上對一般的圖形進行了探究,設(shè)∠ABE=,若旋轉(zhuǎn)后所得的線段EF與EB的數(shù)量關(guān)系滿足(1)中的結(jié)論,請直接寫出角,,滿足的關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點M在BA的延長線上.
(1)按下列要求作圖,并在圖中標明相應(yīng)的字母.(保留作圖痕跡)
①作∠MAC的平分線AN;
②作AC的中點O,連結(jié)BO,并延長BO交AN于點D,連結(jié)CD;
(2)在(1)的條件下,判斷四邊形ABCD的形狀,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在反比例函數(shù)的圖象上有一動點,連接并延長交圖象的另一支于點,在第二象限內(nèi)有一點,滿足,當點運動時,點始終在函數(shù)的圖象上運動,若,則的值為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】越野自行車是中學(xué)生喜愛的交通工具,市場巨大,竟爭也激烈.某品牌經(jīng)銷商經(jīng)營的型車去年銷售總額為萬元,今年每輛售價比去年降低元,若賣出的數(shù)量相同,銷售總額將比去年減少.
(1)設(shè)今年型車每輛銷售價為元,求的值;
(2)該品牌經(jīng)銷商計劃新進一批型車和新款型車共輛,且型車的進貨數(shù)量不超過型車數(shù)量的兩倍,請問應(yīng)如何安排兩種型號車的進貨數(shù)量,才能使這批售出后獲利最多?
、兩種型號車今年的進貨和銷售價格表
型車 | 型車 | |
進貨價 | 元/輛 | 元/輛 |
銷售價 | 元/輛 | 元/輛 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)“三角形的內(nèi)角和外角”時,老師在學(xué)案上設(shè)計了以下內(nèi)容:
如圖,已知△ABC,對∠A+∠B+∠ACB=180°的說理過程如下:
延長BC到點D,過點C作CE∥AB.
∵CE∥AB.
∴∠A=①(兩直線平行,內(nèi)錯角相等).
∠B=②(兩直線平行,同位角相等).
∵∠ACB+③+④=180°(平角定義).
∴∠A+∠B+∠ACB=180°(等量代換).
下列選項正確的是( 。
A.①處填∠ECDB.②處填∠ECDC.③處填∠AD.④處填∠B
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在矩形ABCD中,AB=4,AD=3,⊙C與對角線BD相切.
(1)如圖1,求⊙C的半徑;
(2)如圖2,點P是⊙C上一個動點,連接AP,AC,AP交⊙C于點Q,若sin∠PAC=,求∠CPA的度數(shù)和弧PQ的長;
(3)如圖,對角線AC與⊙C交于點E,點P是⊙C上一個動點,設(shè)點P到直線AC的距離為d,當0<d≤時,請直接寫出∠PCE度數(shù)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園音樂之聲“結(jié)束后,王老師整理了所有參賽選手的比賽成績(單位:分),繪制成如下頻數(shù)直方圖和扇形統(tǒng)計圖:
(1)求本次比賽參賽選手總?cè)藬?shù),并補全頻數(shù)直方圖;
(2)求扇形統(tǒng)計圖中扇形E的圓心角度數(shù);
(3)成績在E區(qū)域的選手中,男生比女生多一人,從中隨機選取兩人,求恰好選中兩名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】關(guān)于二次函數(shù)的三個結(jié)論:①對任意實數(shù)m,都有與對應(yīng)的函數(shù)值相等;②若3≤x≤4,對應(yīng)的y的整數(shù)值有4個,則或;③若拋物線與x軸交于不同兩點A,B,且AB≤6,則或.其中正確的結(jié)論是( )
A.①②B.①③C.②③D.①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com