【題目】如圖1,我們把對角線互相垂直的四邊形叫做垂美四邊形.

(1)概念理解:如圖2,在四邊形ABCD中,AB=AD,CB=CD,問四邊形ABCD是垂美四邊形嗎?請說明理由.

(2)性質探究:試探索垂美四邊形ABCD兩組對邊AB,CD與BC,AD之間的數(shù)量關系.

猜想結論:(要求用文字語言敘述) 寫出證明過程(先畫出圖形,寫出已知、求證).

(3)問題解決:如圖3,分別以Rt△ACB的直角邊AC和斜邊AB為邊向外作正方形ACFG和正方形ABDE,連接CE,BG,GE,已知AC=4,AB=5,求GE長.

【答案】(1)四邊形ABCD是垂美四邊形;(2)垂美四邊形的兩組對邊的平方和相等;(3)

【解析】

試題分析:(1)根據(jù)垂直平分線的判定定理證明即可;

(2)根據(jù)垂直的定義和勾股定理解答即可;

(3)根據(jù)垂美四邊形的性質、勾股定理、結合(2)的結論計算.

試題解析:(1)四邊形ABCD是垂美四邊形.

證明:∵AB=AD,∴點A在線段BD的垂直平分線上,∵CB=CD,∴點C在線段BD的垂直平分線上,∴直線AC是線段BD的垂直平分線,∴AC⊥BD,即四邊形ABCD是垂美四邊形;

(2)猜想結論:垂美四邊形的兩組對邊的平方和相等.

如圖2,已知四邊形ABCD中,AC⊥BD,垂足為E,求證:.

證明:∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,= =,∴;

(3)連接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG=AC,GAB=CAE,AB=AE,∴△GAB≌△CAE,∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四邊形CGEB是垂美四邊形,由(2)得,,∵AC=4,AB=5,∴BC=3,CG=,BE=,∴=73,∴GE=

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】若關于x的一元二次方程x2kx20的一個根為﹣1,則另一個根為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果“盈利5%”記作+5%,那么﹣3%表示( 。
A.虧損3%
B.虧損8%
C.盈利2%
D.少賺3%

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在菱形ABCD中,AB=,tanABC=2,點E從點D出發(fā),以每秒1個單位長度的速度沿著射線DA的方向勻速運動,設運動時間為t(秒),將線段CE繞點C順時針旋轉一個角α(α=BCD),得到對應線段CF.

(1)求證:BE=DF;

(2)當t= 秒時,DF的長度有最小值,最小值等于 ;

(3)如圖2,連接BD、EF、BD交EC、EF于點P、Q,當t為何值時,EPQ是直角三角形?

(4)如圖3,將線段CD繞點C順時針旋轉一個角α(α=BCD),得到對應線段CG.在點E的運動過程中,當它的對應點F位于直線AD上方時,直接寫出點F到直線AD的距離y關于時間t的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】請閱讀下列材料,并完成相應的任務:

阿基米德折弦定理

阿基米德(archimedes,公元前287﹣公元前212年,古希臘)是有史以來最偉大的數(shù)學家之一,他與牛頓、高斯并成為三大數(shù)學王子.

阿拉伯Al﹣Binmi(973﹣1050年)的譯文中保存了阿基米德折弦定理的內容,蘇聯(lián)在1964年根據(jù)Al﹣Binmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.

阿基米德折弦定理:如圖1,AB和BC是O的兩條弦(即折線ABC是圓的一條折弦),BCAB,M是的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.

M是的中點,MA=MC.

任務:

(1)請按照上面的證明思路,寫出該證明的剩余部分;

(2)填空:如圖3,已知等邊ABC內接于O,AB=2,D為上一點,ABD=45°,AEBD于點E,則BDC的周長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在﹣1,0,﹣2,1四個數(shù)中,最小的數(shù)是(
A.﹣1
B.0
C.﹣2
D.1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡:(2x-3)2-(2x-3)(2x+3).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如果∠α和∠β互補,且∠α>∠β,則下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③ (∠α+∠β);④ (∠α﹣∠β).正確的有( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D為BC邊上一點,∠B=30°,∠DAB=45°.
(1)求∠DAC的度數(shù);
(2)求證:DC=AB.

查看答案和解析>>

同步練習冊答案