分析 (1)設(shè)經(jīng)過x秒鐘,△PBQ的面積等于是△ABC的三分之一,分別表示出線段PB和線段BQ的長,然后根據(jù)面積之間的關(guān)系列出方程求得時間即可;
(2)根據(jù)勾股定理列出方程求解即可;
解答 解:(1)設(shè)t秒后,△PBQ的面積等于是△ABC的三分之一,根據(jù)題意得:
$\frac{1}{2}$×2t(6-t)=$\frac{1}{3}$×$\frac{1}{2}$×6×8,
解得:t=2或4.
答:2秒或4秒后,△PBQ的面積等于是△ABC的三分之一.
(2)設(shè)x秒時,P、Q相距6厘米,根據(jù)題意得:
(6-x)2+(2x)2=36,
解得:x=0(舍去)或x=$\frac{12}{5}$.
答:$\frac{12}{5}$秒時,P、Q相距6厘米.
點評 本題考查了一元二次方程的應(yīng)用,掌握三角形的面積計算方法,勾股定理,能夠表示出線段PB和QB的長是解答本題的關(guān)鍵.
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{2}{3}$ | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{6}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:選擇題
A. | 3x+20=4x-25 | B. | 3x-25=4x+20 | C. | 4x-3x=25-20 | D. | 3x-20=4x+25 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com