【題目】如圖,在四邊形ABCD中,AB=BC,∠ABC=CDA=90°BEAD于點(diǎn)E,且四邊形ABCD的面積為144,則BE________

【答案】12

【解析】

BFCDCD的延長(zhǎng)線于點(diǎn)F,由已知條件可證得∠ABE=CBF,且由已知∠AEB=CFB=90°,AB=BC,所以△ABE≌△CBF,可得BE=BF,四邊形ABCD的面積等于新正方形FBED的面積,即可得BE長(zhǎng).

過(guò)B點(diǎn)作BFCD,與DC的延長(zhǎng)線交于F點(diǎn),則∠F=90°

BE⊥AD,AEB=∠BED=90°,

∵∠CDA=90°,

∴四邊形BEDF是矩形,

∴∠EBF=90°,

∵∠ABC=90°,

∴∠ABE+EBC=CBF+EBC,

∴∠ABE=CBF,

AB=BC,

∴△ABE≌△CBF,

BE=BF,

∴矩形BEDF為正方形,

S正方形BEDF=SBCF+S四邊形BEDC= SBAE+S四邊形BEDC=S四邊形ABCD=144

BE2=144,

BE=12,

故答案為:12

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的一條弦,EAB的中點(diǎn),過(guò)點(diǎn)EECOA于點(diǎn)C,過(guò)點(diǎn)B作⊙O的切線交CE的延長(zhǎng)線于點(diǎn)D.

(1)求證:DB=DE;

(2)若AB=12,BD=5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),若點(diǎn)P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且),則稱點(diǎn)P′為點(diǎn)Pk屬派生點(diǎn)”.例如:P(1,4)屬派生點(diǎn)為P′(1+2×4,2×1+4),即P′(9,6).

(1)點(diǎn)P(-2,3)“2屬派生點(diǎn)”P′的坐標(biāo)為__________.

(2) 若點(diǎn)P“3屬派生點(diǎn)”P′的坐標(biāo)為(6,2),求點(diǎn)P的坐標(biāo);

(3) 若點(diǎn)Px軸的正半軸上,點(diǎn)P“k屬派生點(diǎn)P′點(diǎn),且線段PP′的長(zhǎng)度為線段OP長(zhǎng)度的2倍,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A在第二象限,⊙A分別與x軸、y軸相切.若將⊙A向右平移5個(gè)單位,圓心A恰好落在直線y=2x﹣4上,則⊙A的半徑為(  )

A. B. 2 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC4,AB3,分別以ABAC為邊,作等邊三角形ABD和等邊三角形ACE,連接CD,BE

1)請(qǐng)找出圖中與BE相等的線段,并說(shuō)明理由;

2)當(dāng)∠ABC30°時(shí),求線段BE長(zhǎng);

3)直接寫(xiě)出線段BE長(zhǎng)的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AFDEF,且DF=15cmEF=6cm,AE=10cm.

1)求AF的長(zhǎng);

2)求正方形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)閱讀理解:

如圖①,在ABC中,若AB=5,AC=3,求BC邊上的中線AD的取值范圍.

解決此問(wèn)題可以用如下方法:延長(zhǎng)AD到點(diǎn)E使DE=AD,再連接BE(或?qū)?/span>ACD繞著點(diǎn)D逆時(shí)針旋轉(zhuǎn)180°得到EBD),把AB,AC,2AD集中在ABE中,利用三角形三邊的關(guān)系即可判斷.中線AD的取值范圍是___________

(2)問(wèn)題解決: 如圖②,在ABC,DBC邊上的中點(diǎn),DEDF于點(diǎn)D,DEAB于點(diǎn)E,DFAC于點(diǎn)F,連接EF,求證:BE+CFEF;

(3)問(wèn)題拓展:如圖③,在四邊形ABCD,B+D=180°,CB=CD,C為頂點(diǎn)作∠ECF,使得角的兩邊分別交AB,ADE、F兩點(diǎn),連接EF,EF=BE+DF,試探索∠ECF與∠A之間的數(shù)量關(guān)系,并加以證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,分別以線段AB兩端點(diǎn)A,B為圓心,以大于AB長(zhǎng)為半徑畫(huà)弧,兩弧交于C,D兩點(diǎn),作直線CDAB于點(diǎn)M,DEAB,BECD.

(1)判斷四邊形ACBD的形狀,并說(shuō)明理由;

(2)求證:ME=AD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,在ABC中,∠A>B,分別以點(diǎn)A,C為圓心,大于AC長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P,點(diǎn)Q,作直線PQAB于點(diǎn)D,再分別以點(diǎn)B,D為圓心,大于BD長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)M,點(diǎn)N,作直線MNBC于點(diǎn)E,若CDE是等邊三角形,則∠A=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案