【題目】如圖,在平面直角坐標(biāo)系中,A是拋物線y= x2上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A在第一象限內(nèi).AE⊥y軸于點(diǎn)E,點(diǎn)B坐標(biāo)為(0,2),直線AB交x軸于點(diǎn)C,點(diǎn)D與點(diǎn)C關(guān)于y軸對稱,直線DE與AB相交于點(diǎn)F,連結(jié)BD.設(shè)線段AE的長為m,△BED的面積為S.
(1)當(dāng)m= 時(shí),求S的值.
(2)求S關(guān)于m(m≠2)的函數(shù)解析式.
(3)①若S= 時(shí),求 的值;
②當(dāng)m>2時(shí),設(shè) =k,猜想k與m的數(shù)量關(guān)系并證明.
【答案】
(1)
解:∵點(diǎn)A在二次函數(shù)y= x2的圖象上,AE⊥y軸于點(diǎn)E,且AE=m,
∴點(diǎn)A的坐標(biāo)為(m, m2),
當(dāng)m= 時(shí),點(diǎn)A的坐標(biāo)為( ,1),
∵點(diǎn)B的坐標(biāo)為(0,2),
∴BE=OE=1.
∵AE⊥y軸,
∴AE∥x軸,
∴△ABE∽△CBO,
∴ = ,
∴CO=2 ,
∵點(diǎn)D和點(diǎn)C關(guān)于y軸對稱,
∴DO=CO=2 ,
∴S= BEDO= ×1×2 =
(2)
解:(i)當(dāng)0<m<2時(shí)(如圖1),
∵點(diǎn)D和點(diǎn)C關(guān)于y軸對稱,
∴△BOD≌△BOC,
∵△BEA∽△BOC,
∴△BEA∽△BOD,
∴ ,即BEDO=AEBO=2m.
∴S= BEDO= ×2m=m;
(ii)當(dāng)m>2時(shí)(如圖2),
同(i)解法得:S= BEDO= AEOB=m,
由(i)(ii)得,
S關(guān)于m的函數(shù)解析式為S=m(m>0且m≠2).
(3)
解:①如圖3,連接AD,
∵△BED的面積為 ,
∴S=m= ,
∴點(diǎn)A的坐標(biāo)為( , ),
∵ = = =k,
∴S△ADF=kS△BDF,S△AEF=kS△BEF,
∴ = = =k,
∴k= = = ;
②k與m之間的數(shù)量關(guān)系為k= m2,
如圖4,連接AD,
∵ = = =k,
∴S△ADF=kS△BDF,S△AEF=kS△BEF,
∴ = = =k,
∵點(diǎn)A的坐標(biāo)為(m, m2),S=m,
∴k= = = m2(m>2).
【解析】(1)首先可得點(diǎn)A的坐標(biāo)為(m, m2),繼而可得點(diǎn)E的坐標(biāo)及BE、OE的長度,易得△ABE∽△CBO,利用對應(yīng)邊成比例求出CO,根據(jù)軸對稱的性質(zhì)得出DO,繼而可求解S的值;(2)分兩種情況討論,(I)當(dāng)0<m<2時(shí),將BEDO轉(zhuǎn)化為AEBO,求解;(II)當(dāng)m>2時(shí),由(I)的解法,可得S關(guān)于m的函數(shù)解析式;(3)①首先可確定點(diǎn)A的坐標(biāo),根據(jù) = = =k,可得S△ADF=kS△BDFS△AEF=kS△BEF , 從而可得 = = =k,代入即可得出k的值;②可得 = = =k,因?yàn)辄c(diǎn)A的坐標(biāo)為(m, m2),S=m,代入可得k與m的關(guān)系.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用二次函數(shù)的性質(zhì)的相關(guān)知識可以得到問題的答案,需要掌握增減性:當(dāng)a>0時(shí),對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:(﹣1)3﹣( )﹣2× +6×|﹣ |
(2)化簡并求值:( )÷ ,其中a=1,b=2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在正方形ABCD中,BD是一條對角線,點(diǎn)P在射線CD上(與點(diǎn)C、D不重合),連接AP,平移△ADP,使點(diǎn)D移動(dòng)到點(diǎn)C,得到△BCQ,過點(diǎn)Q作QH⊥BD于H,連接AH,PH.
(1)若點(diǎn)P在線段CD上,如圖1.
①依題意補(bǔ)全圖1;
②判斷AH與PH的數(shù)量關(guān)系與位置關(guān)系并加以證明;
(2)若點(diǎn)P在線段CD的延長線上,且∠AHQ=152°,正方形ABCD的邊長為1,請寫出求DP長的思路.(可以不寫出計(jì)算結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD 是一段斜坡,AB 是水平線,現(xiàn)為了測斜坡上一點(diǎn) D 的鉛直高度(即 垂線段 DB 的長度),小亮在點(diǎn) D 處立上一竹竿 CD,并保證 CD=AB,CD⊥AD,然后在竿頂 C 處垂下一根細(xì)繩(細(xì)繩末端掛一重錘,以使細(xì)繩與水平線垂直),細(xì)繩與斜坡 AD 交于點(diǎn)E,此時(shí)他測得 CE=8 m,AE=6 m,求 BD 的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】霧霾天氣已經(jīng)成為人們普遍關(guān)注的話題,霧霾不僅僅影響人們的出行,還影響著人們的健康,太原市會(huì)持續(xù)出現(xiàn)霧霾天氣嗎?在2016年2月周末休息期間,某校九年級1班綜合實(shí)踐小組的同學(xué)以“霧霾天氣的主要成因”為主題,隨機(jī)調(diào)查了太原市部分市民的觀點(diǎn),并對調(diào)查結(jié)果進(jìn)行了整理,繪制了如下不完整的統(tǒng)計(jì)圖表,觀察并回答下列問題:
類別 | 霧霾天氣的主要成因 | 百分比 |
A | 工業(yè)污染 | 45% |
B | 汽車尾氣排放 | m |
C | 城中村燃煤問題 | 15% |
D | 其他(綠化不足等) | n |
(1)請你求出本次被調(diào)查市民的人數(shù)及m,n的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若太原市有300萬人口,請你估計(jì)持有A,B兩類看法的市民共有多少人?
(3)學(xué)校要求小穎同學(xué)在A,B,C,D這四個(gè)霧霾天氣的主要成因中,隨機(jī)抽取兩項(xiàng)作為課題研究的項(xiàng)目進(jìn)行考察分析,請用畫樹狀圖或列表的方法,求出小穎同學(xué)剛好抽到B(汽車尾氣排放),C(城中村燃煤問題)的概率.(用A,B,C,D表示各項(xiàng)目)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0),B兩點(diǎn),(點(diǎn)A在點(diǎn)B的左側(cè)),與直線AC交于點(diǎn)C(2,3),直線AC與拋物線的對稱軸l相交于點(diǎn)D,連接BD.
(1)求拋物線的函數(shù)表達(dá)式,并求出點(diǎn)D的坐標(biāo);
(2)如圖2,若點(diǎn)M、N同時(shí)從點(diǎn)D出發(fā),均以每秒1個(gè)單位長度的速度分別沿DA、DB運(yùn)動(dòng),連接MN,將△DMN沿MN翻折,得到△D′MN,判斷四邊形DMD′N的形狀,并說明理由,當(dāng)運(yùn)動(dòng)時(shí)間t為何值時(shí),點(diǎn)D′恰好落在x軸上?
(3)在平面內(nèi),是否存在點(diǎn)P(異于A點(diǎn)),使得以P、B、D為頂點(diǎn)的三角形與△ABD相似(全等除外)?若存在,請直接寫出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】星期天8:00~8:30,燃?xì)夤窘o平安加氣站的儲(chǔ)氣罐注入天然氣.之后,一位工作人員以每車20立方米的加氣量,依次給在加氣站排隊(duì)等候的若干輛車加氣.儲(chǔ)氣罐中的儲(chǔ)氣量y(立方米)與時(shí)間x(小時(shí))的函數(shù)關(guān)系如圖所示.
(1)8:00~8:30,燃?xì)夤鞠騼?chǔ)氣罐注入了多少立方米的天然氣;
(2)當(dāng)x≥0.5時(shí),求儲(chǔ)氣罐中的儲(chǔ)氣量y(立方米)與時(shí)間x(小時(shí))的函數(shù)解析式;
(3)請你判斷,正在排隊(duì)等候的第18輛車能否在當(dāng)天10:30之前加完氣?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,一條細(xì)繩系著一個(gè)小球在平面內(nèi)擺動(dòng),已知細(xì)繩從懸掛點(diǎn)O到球心的長度為50厘米,小球在帶你B位置時(shí)達(dá)到最低點(diǎn),當(dāng)小球在左側(cè)點(diǎn)A時(shí)與最低點(diǎn)B時(shí)細(xì)繩相應(yīng)所成的角度∠AOB=37°.(取sin37°=0.6,cos37°=0.8,tan37°=0.75)
(1)求點(diǎn)A與點(diǎn)B的高度差BC的值.
(2)如圖2,若在點(diǎn)O的正下方有一個(gè)阻礙物P,當(dāng)小球從左往右落到最低處后,運(yùn)動(dòng)軌跡改變,變?yōu)橐訮為圓心,PB為半徑繼續(xù)向右擺動(dòng),當(dāng)擺動(dòng)至與點(diǎn)A在同一水平高度的點(diǎn)D時(shí),滿足PD部分細(xì)繩與水平線的夾角∠DPQ=30°,求OP的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一根可伸縮的魚竿,魚竿是用10節(jié)大小不同的空心套管連接而成.閑置時(shí)魚竿可收縮,完全收縮后,魚竿長度即為第1節(jié)套管的長度(如圖1所示):使用時(shí),可將魚竿的每一節(jié)套管都完全拉伸(如圖2所示).圖3是這跟魚竿所有套管都處于完全拉伸狀態(tài)下的平面示意圖.已知第1節(jié)套管長50cm,第2節(jié)套管長46cm,以此類推,每一節(jié)套管均比前一節(jié)套管少4cm.完全拉伸時(shí),為了使相鄰兩節(jié)套管連接并固定,每相鄰兩節(jié)套管間均有相同長度的重疊,設(shè)其長度為xcm.
(1)請直接寫出第5節(jié)套管的長度;
(2)當(dāng)這根魚竿完全拉伸時(shí),其長度為311cm,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com