【題目】九(1)班開(kāi)展了“讀一本好書”的活動(dòng),班委會(huì)對(duì)學(xué)生閱讀書籍的情況進(jìn)行了問(wèn)卷調(diào)查,問(wèn)卷設(shè)置了“小說(shuō)”“戲劇”“散文”“其他”四個(gè)類別,每位同學(xué)僅選一項(xiàng).根據(jù)調(diào)査結(jié)果繪制了不完整的頻數(shù)分布表和扇形統(tǒng)計(jì)圖.

類別

 頻數(shù)(人數(shù))

 頻率

 小說(shuō)

a

0.5

戲劇

4

散文

10

0.25

 其他

6

 合計(jì)

b

1

根據(jù)圖表提供的信息,回答下列問(wèn)題:

1)直接寫出:a   b   m   

2)在調(diào)查問(wèn)卷中,甲、乙、丙、丁四位同學(xué)選擇了“戲劇”類,現(xiàn)從中任意選出2名同學(xué)參加學(xué)校的戲劇社團(tuán),請(qǐng)求選取的2人恰好是甲和乙的概率.

【答案】(1)20、40、15;(2

【解析】

1)先由散文對(duì)應(yīng)的頻數(shù)及其頻率可得總?cè)藬?shù)b,再用總?cè)藬?shù)乘以小數(shù)對(duì)應(yīng)頻率求得其人數(shù)a,用其他人數(shù)除以總?cè)藬?shù)可得m的值;

2)利用樹狀圖法展示所有12種等可能的結(jié)果數(shù),再找出恰好是甲和乙的結(jié)果數(shù),然后根據(jù)概率公式求解.

解:(1)∵被調(diào)查的總?cè)藬?shù)b10÷0.2540(人),

a40×0.520,m%×100%15%,即m15

故答案為:20、4015;

2)畫樹狀圖如下:

共有12種等可能的結(jié)果數(shù),其中恰好是甲和乙的只有2種,

所以選取的2人恰好是甲和乙的概率=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y軸交于點(diǎn)C0,-4),與x軸交于點(diǎn)A,B,且B點(diǎn)的坐標(biāo)為(20

1)求該拋物線的解析式;

2)若點(diǎn)PAB上的一動(dòng)點(diǎn),過(guò)點(diǎn)PPE∥AC,交BCE,連接CP,求△PCE面積的最大值;

3)若點(diǎn)DOA的中點(diǎn),點(diǎn)M是線段AC上一點(diǎn),且△OMD為等腰三角形,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC是O的直徑,點(diǎn)B在O上,ACB=30°.

(1) 利用尺規(guī)作ABC的平分線BD,交AC于點(diǎn)E,交O于點(diǎn)D,連接CD(保留作圖痕跡,不寫作法)

(2) 在 (1) 所作的圖形中,求ABE與CDE的面積之比.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】斜坡AC上有一棵大樹AO,由于受臺(tái)風(fēng)的影響而傾斜,如圖,斜坡AC的坡角為30°,AC長(zhǎng)米,大樹AO的傾斜角是60°,大樹AO的長(zhǎng)為3米,若在地面上B處測(cè)得樹頂部O的仰角為60°,求點(diǎn)B與斜坡下端C之間的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知△ABC是等腰直角三角形,ABACD為平面內(nèi)的任意一點(diǎn),且滿足CDAC,若△ADB是以AD為腰的等腰三角形,則∠CDB的度數(shù)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,CACB,∠C90°,點(diǎn)DBC的中點(diǎn),將△ABC沿著直線EF折疊,使點(diǎn)A與點(diǎn)D重合,折痕交AB于點(diǎn)E,交AC于點(diǎn)F,那么sinBED的值為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形AOBC中,OB4,OA3,分別以OB,OA所在直線為x軸,y軸,建立如圖所示的平面直角坐標(biāo)系,FBC邊上一個(gè)動(dòng)點(diǎn)(不與BC重合),過(guò)點(diǎn)F的反比例函數(shù)k0)的圖象與邊AC交于點(diǎn)E

1)當(dāng)點(diǎn)F為邊BC的中點(diǎn)時(shí),求點(diǎn)E的坐標(biāo);(2)連接EF,求∠EFC的正切值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC中,ACB=90°AC=BC,P為△ABC內(nèi)部一點(diǎn),且∠APB=BPC=135°

1)求證:△PAB∽△PBC

2)求證:PA=2PC

3)若點(diǎn)P到三角形的邊AB,BCCA的距離分別為h1,h2,h3,求證h12=h2·h3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角坐標(biāo)系中,矩形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,A、C分別在坐標(biāo)軸上,點(diǎn)B的坐標(biāo)為(4,2),直線交AB,BC分別于點(diǎn)M,N,反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn)M,N.

(1)求反比例函數(shù)的解析式;

(2)若點(diǎn)P在y軸上,且OPM的面積與四邊形BMON的面積相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案