【題目】某商店購買60件A商品和30件B商品共用了1080元,購買50件A商品和20件B商品共用了880元.
(1)A、B兩種商品的單價分別是多少元?
(2)已知該商店購買B商品的件數(shù)比購買A商品的件數(shù)的2倍少4件,如果需要購買A、B兩種商品的總件數(shù)不少于32件,且該商店購買的A、B兩種商品的總費用不超過296元,那么該商店有哪幾種購買方案?
【答案】(1)A種商品的單價為16元、B種商品的單價為4元;(2)有兩種方案:方案(1):m=12,2m﹣4=20 即購買A商品的件數(shù)為12件,則購買B商品的件數(shù)為20件;方案(2):m=13,2m﹣4=22 即購買A商品的件數(shù)為13件,則購買B商品的件數(shù)為22件.
【解析】
試題分析:(1)設(shè)A種商品的單價為x元、B種商品的單價為y元,根據(jù)等量關(guān)系:①購買60件A商品的錢數(shù)+30件B商品的錢數(shù)=1080元,②購買50件A商品的錢數(shù)+20件B商品的錢數(shù)=880元分別列出方程,聯(lián)立求解即可.
(2)設(shè)購買A商品的件數(shù)為m件,則購買B商品的件數(shù)為(2m﹣4)件,根據(jù)不等關(guān)系:①購買A、B兩種商品的總件數(shù)不少于32件,②購買的A、B兩種商品的總費用不超過296元可分別列出不等式,聯(lián)立求解可得出m的取值范圍,進而討論各方案即可.
試題解析:(1)設(shè)A種商品的單價為x元、B種商品的單價為y元,由題意得:,解得:.
答:A種商品的單價為16元、B種商品的單價為4元.
(2)設(shè)購買A商品的件數(shù)為m件,則購買B商品的件數(shù)為(2m﹣4)件,由題意得:,解得:12≤m≤13,∵m是整數(shù),∴m=12或13,故有如下兩種方案:
方案(1):m=12,2m﹣4=20 即購買A商品的件數(shù)為12件,則購買B商品的件數(shù)為20件;
方案(2):m=13,2m﹣4=22 即購買A商品的件數(shù)為13件,則購買B商品的件數(shù)為22件.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將拋物線y = x2平移得到拋物線y = (x+2)2,則這個平移過程正確的是( )
A. 向左平移2個單位 B. 向右平移2個單位
C. 向上平移2個單位 D. 向下平移2個單位
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程(m﹣2)x2+x﹣1=0是一元二次方程,則m的取值范圍是(( 。
A. m≠2 B. m=2 C. m≥2 D. m≠0
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=﹣x﹣2圖象與x軸相交于A,B兩點(點A在點B的左側(cè)).若C(m,1﹣m)是拋物線上位于第四象限內(nèi)的點,D是線段AB上的一個動點(不與A,B重合),過點D分別作DE∥BC交AC于E,DF∥AC交BC于F.
(1)、求點A和點B的坐標(biāo);
(2)、求證:四邊形DECF是矩形;
(3)、連接EF,線段EF的長是否存在最小值?若存在,求出EF的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程或方程組解應(yīng)用題:
為了響應(yīng)“十三五”規(guī)劃中提出的綠色環(huán)保的倡議,某校文印室提出了每個人都踐行“雙面打印,節(jié)約用紙”.已知打印一份資料,如果用A4厚型紙單面打印,總質(zhì)量為400克,將其全部改成雙面打印,用紙將減少一半;如果用A4薄型紙雙面打印,這份資料的總質(zhì)量為160克,已知每頁薄型紙比厚型紙輕0.8克,求A4薄型紙每頁的質(zhì)量.(墨的質(zhì)量忽略不計)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中菲黃巖島爭端持續(xù),我海監(jiān)船加大黃巖島附近海域的巡航維權(quán)力度.如圖,OA⊥OB,OA=36海里,OB=12海里,黃巖島位于O點,我國海監(jiān)船在點B處發(fā)現(xiàn)有一不明國籍的漁船,自A點出發(fā)沿著AO方向勻速駛向黃巖島所在地點O,我國海監(jiān)船立即從B處出發(fā)以相同的速度沿某直線去攔截這艘漁船,結(jié)果在點C處截住了漁船.
(1)請用直尺和圓規(guī)作出C處的位置;
(2)求我國海監(jiān)船行駛的航程BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com