精英家教網(wǎng)如圖,P為正方形ABCD內(nèi)一點(diǎn),PA=1,PB=2,PC=3.
(1)求作:將△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后的圖形.(要求尺規(guī)作圖)
(2)求∠APB的度數(shù).
分析:(1)將△APB繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,即將A,P,兩點(diǎn)繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得出即可;
(2)連接PE,構(gòu)造兩個(gè)直角三角形:Rt△PBE和Rt△PCE,利用勾股定理逆定理解答即可.
解答:精英家教網(wǎng)解:(1)如圖所示:△CBE即為所求;

(2)解:連接PE.
∵將△APB繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得△BEC,
∴△BEC≌△APB,∠APB=∠BEC,
∴△BEP為等腰直角三角形,
∴∠BEP=45°,
∵PB=BE=2,
∴PE=
BP2+BE2
=2
2
,
∵PC=3,CE=PA=1,
∴PC2=PE2+CE2,
∴∠PEC=90°,
∴∠APB=∠BEC=∠BEP+∠PEC=45°+90°=135°.
點(diǎn)評(píng):此題考查了旋轉(zhuǎn)的性質(zhì)及勾股定理的逆定理,將△APB繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°并連接PE是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,E為正方形ABCD的邊AB上一點(diǎn)(不含A、B點(diǎn)),F(xiàn)為BC邊的延長(zhǎng)線上一點(diǎn),△DAE旋轉(zhuǎn)后能與△DCF重合.
(1)旋轉(zhuǎn)中心是哪一點(diǎn)?
(2)旋轉(zhuǎn)了多少度?
(3)如果連接EF,那么△DEF是怎樣的三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P為正方形ABCD的對(duì)稱(chēng)中心,A(0,3),B(1,0),直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個(gè)單位每秒速度運(yùn)動(dòng),同時(shí),點(diǎn)R從O出發(fā)沿精英家教網(wǎng)OM方向以
2
個(gè)單位每秒速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.求:
(1)C的坐標(biāo)為
 
;
(2)當(dāng)t為何值時(shí),△ANO與△DMR相似?
(3)△HCR面積S與t的函數(shù)關(guān)系式;并求以A、B、C、R為頂點(diǎn)的四邊形是梯形時(shí)t的值及S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,G為正方形ABCD的對(duì)稱(chēng)中心,A(0,2),B(1,0),直線OG交AB于E,DC于F,點(diǎn)Q從A出發(fā)沿A→B→C的方向以
5
個(gè)單位每秒速度運(yùn)動(dòng),同時(shí),點(diǎn)P從O出發(fā)沿OF方精英家教網(wǎng)向以
2
個(gè)單位每秒速度運(yùn)動(dòng),Q點(diǎn)到達(dá)終點(diǎn),點(diǎn)P停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t.求:
(1)求G點(diǎn)的坐標(biāo).
(2)當(dāng)t為何值時(shí),△AEO與△DFP相似?
(3)求△QCP面積S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,P為正方形ABCD的對(duì)稱(chēng)中心,正方形ABCD的邊長(zhǎng)為
10
,tan∠ABO=3,直線OP交AB于N,DC于M,點(diǎn)H從原點(diǎn)O出發(fā)沿x軸的正半軸方向以1個(gè)單位每秒速度運(yùn)動(dòng),同時(shí),點(diǎn)R從O出發(fā)沿OM方向以
2
個(gè)單位每秒速度運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t,求:
(1)直接寫(xiě)出A、D、P的坐標(biāo);
(2)求△HCR面積S與t的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時(shí),△ANO與△DMR相似?
(4)求以A、B、C、R為頂點(diǎn)的四邊形是梯形時(shí)t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2009•梅州一模)如圖,O為正方形ABCD對(duì)角線AC上一點(diǎn),以O(shè)為圓心,OA長(zhǎng)為半徑的⊙0與BC相切于點(diǎn)M,與AB、AD分別相交于點(diǎn)E、F.
(1)求證:CD與⊙0相切;
(2)若⊙0的半徑為
2
,求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案