精英家教網 > 初中數學 > 題目詳情
我市有一種可食用的野生菌,上市時,某經銷公司按市場價格30元/千克收購了這種野生菌1000千克存放入冷庫中,據預測,該野生菌的市場價格y(元)與存放天數x(天)之間的部分對應值如下表所示:
存放天數x(天)246810
市場價格y(元)3234363840
但冷凍存放這批野生菌時每天需要支出各種費用合計310元,而且這類野生菌在冷庫中最多保存110天,同時,平均每天有3千克的野生菌損壞不能出售.
(1)請你從所學過的一次函數、二次函數和反比例函數中確定哪種函數能表示y與x的變化規(guī)律,并直接寫出y與x之間的函數關系式;若存放x天后,將這批野生茵一次性出售,設這批野生菌的銷售總額為P元,試求出P與x之間的函數關系式;
(2)該公司將這批野生菌存放多少天后出售可獲得最大利潤w元并求出最大利潤.(利潤=銷售總額-收購成本-各種費用)
(3)該公司以最大利潤將這批野生菌一次性出售的當天,再次按市場價格收購這種野生1180千克,存放入冷庫中一段時間后一次性出售,其它條件不變,若要使兩次的總盈利不低于4.5萬元,請你確定此時市場的最低價格應為多少元?(結果精確到個位,參考數據:
14
≈3.742,
1.4
≈1.183
由題意得:
(1)y=x+30,
P=y(1000-3x)=(x+30)(1000-3x)=-3x2+910x+30000;

(2)w=P-310x-1000×30=-3x2+910x+30000-310x-1000×30=-3x2+600x=-3(x-100)2+30000
∵0<x≤110,
∴當x=100時,利潤w最大,最大利潤為30000元,
∴該公司將這批野生茵存放100天后出售可獲得最大利潤30000元;

(3)由(2)可知,該公司以最大利潤出售這批野生菌的當天,市場價格為130元
設再次進貨的野生茵存放a天,則利潤
w1=(a+130)(1180-3a)-310a-130×1180,
=-3a2+480a,
∴兩次的總利潤為w2=-3a2+480a+30000,
由-3a2+480a+30000=45000,
解得a=80±10
14
,
∵-3<0,
∴當80-10
14
≤a≤80+10
14
時,兩次的總利潤不低于4.5萬元,
又∵0<x≤110,
14
≈3.742
,當a≈43時,此時市場價格最低,市場最低價格應為130+43=173元.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,直線y=x+m和拋物線y=x2+bx+c都經過點A(1,0),B(3,2).
(1)求m的值和拋物線的解析式;
(2)若該拋物線與x軸的另一個交點為C,與y軸交于點D,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,⊙C經過原點且與兩坐標分別交于點A與點B,點A的坐標為(0,6),點M是圓上弧BO的中點,且∠BMO=120°.
①求弧BO的度數;
②求⊙C的半徑;
③求過點B、M、O的二次函數解析式.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,已知二次函數y=ax2+bx+c的圖象的形狀與拋物線y=-
1
2
x2+1的形狀相同,且經過A(2,0)、B(0,-6)兩點.
(1)求這個二次函數的解析式;
(2)設該二次函數的對稱軸與x軸交于點C,連接BA、BC,求△ABC的面積.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:填空題

如圖,已知拋物線y=
1
6
x2-
1
6
(b+1)x+
b
6
(b是實數且b>2)與x軸的正半軸分別交于點A、B(點A位于點B的左側),與y軸的正半軸交于點C.若在第一象限內存在點P,使得四邊形PCOB的面積等于7
2
b
,且△PBC是以點P為直角頂點的等腰直角三角形.求:
(1)點A的坐標為______.
(2)求符合要求的點P坐標為______.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,拋物線y=-x2+2nx+n2-9(n為常數)經過坐標原點和x軸上另一點C,頂點在第一象限.
(1)確定拋物線所對應的函數關系式,并寫出頂點坐標;
(2)在四邊形OABC內有一矩形MNPQ,點M,N分別在OA,BC上,A點坐標為(2,8)B點坐標為(4,8),點Q,P在x軸上.當MN為多少時,矩形MNPQ的面積最大,最大面積是多少?

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

如圖,在平面直角坐標系中,O是坐標原點,點A的坐標是(-2,3),過點A作AB⊥y軸,垂足為B,連結OA,拋物線y=-x2-2x+c經過點A,與x軸正半軸交于點C

(1)求c的值;
(2)將拋物線向下平移m個單位,使平移后得到的拋物線頂點落在△OAB的內部(不包括△OAB的邊界),求m的取值范圍(直接寫出答案即可).
(3)將△OAB沿直線OA翻折,記點B的對應點B′,向左平移拋物線,使B′恰好落在平移后拋物線的對稱軸上,求平移后的拋物線解析式.
(4)連接BC,設點E在x軸上,點F在拋物線上,如果B、C、E、F構成平行四邊形,請寫出點E的坐標(不必書寫計算過程).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知函數y1=ax2+bx+c(a≠0)和y2=mx+n的圖象交于(-2,-5)點和(1,4)點,并且y1=ax2+bx+c的圖象與y軸交于點(0,3).
(1)求函數y1和y2的解析式,并畫出函數示意圖;
(2)x為何值時,①y1>y2;②y1=y2;③y1<y2

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

某商場以每個40元的進價購進一批籃球,如果以每個50元銷售,那么每月可售出200個.根據銷售經驗,售價每提高1元,銷售量相應減少10個.
(1)假設銷售單價提高x元,那么銷售1個籃球所獲得的利潤是______元;這種籃球每月的銷售量是______個;(用含x的代數式表示)
(2)籃球的售價定為多少元時,每月銷售這種籃球的利潤最大?最大利潤是多少?

查看答案和解析>>

同步練習冊答案