【題目】閱讀下列例題的解題過(guò)程,并完成相關(guān)問(wèn)題
例:如圖,在四邊形ABCD中,AD∥BC,∠B=90°,AB=8 cm,AD=12cm,BC=18cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).從運(yùn)動(dòng)開(kāi)始,使PQ∥CD和PQ=CD,分別經(jīng)過(guò)多長(zhǎng)時(shí)間?為什么?
解:①設(shè)經(jīng)過(guò)ts時(shí),PQ∥CD且PQ=CD,此時(shí)四邊形PQCD為平行四邊形.
∵PD=(12-t)cm,CQ=2t cm,
∴12-t=2t.∴t=4.
∴當(dāng)t=4時(shí),PQ∥CD,且PQ=CD.
②設(shè)經(jīng)過(guò)ts時(shí),PQ=CD,分別過(guò)點(diǎn)P,D作BC邊的垂線PE,DF,垂足分別為E,F.
當(dāng)CF=EQ時(shí),四邊形PQCD為梯形(腰相等)或者平行四邊形.
∵∠B=∠A=∠DFB=90°,
∴四邊形ABFD是矩形.∴AD=BF.
∵AD=12 cm,BC=18 cm,
∴CF=BC-BF=6 cm.
當(dāng)四邊形PQCD為梯形(腰相等)時(shí),
PD+2(BC-AD)=CQ,
∴(12-t)+12=2t.∴t=8.
∴當(dāng)t=8時(shí),PQ=CD.
當(dāng)四邊形PQCD為平行四邊形時(shí),由①知當(dāng)t=4時(shí),PQ=CD.
綜上,當(dāng)t=4時(shí),PQ∥CD;當(dāng)t=4或t=8時(shí),PQ=CD.
問(wèn)題1:在整個(gè)運(yùn)動(dòng)過(guò)程中是否存在t值,使得四邊形PQCD是菱形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
問(wèn)題2:從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),四邊形PQBA是矩形?
問(wèn)題3:在整個(gè)運(yùn)動(dòng)過(guò)程中是否存在t值,使得四邊形PQBA是正方形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
問(wèn)題4:是否存在t,使得△DQC是等腰三角形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.
【答案】問(wèn)題1:不存在.理由見(jiàn)解析;問(wèn)題2:當(dāng)t=6時(shí),四邊形PQBA是矩形;問(wèn)題3:不存在.理由見(jiàn)解析;問(wèn)題4:當(dāng)t=5或6或時(shí),△DQC是等腰三角形.
【解析】
問(wèn)題1:要使四邊形PQCD是菱形,則四邊形PQCD一定是平行四邊形,由例可知當(dāng)t=4時(shí),四邊形PQCD是平行四邊形,而此時(shí)DP≠DC,從而可得出結(jié)論;
問(wèn)題2:因?yàn)椤?/span>B=90°,AP∥BQ,由矩形的判定可知當(dāng)AP=BQ時(shí),四邊形ABQP成為矩形,據(jù)此列方程求解即可;
問(wèn)題3:要使四邊形PQBA是正方形,則四邊形PQBA一定是矩形.由問(wèn)題2知當(dāng)t=6時(shí),四邊形PQBA是矩形,而此時(shí)AP≠AB,從而可得出結(jié)論;
問(wèn)題4:分三種情況討論計(jì)算,①當(dāng)QC=DC時(shí);②當(dāng)DQ=DC時(shí),過(guò)點(diǎn)D作DH⊥CQ;③當(dāng)QD=QC時(shí),過(guò)點(diǎn)D作DH⊥CQ,分別列出方程求出時(shí)間,判斷時(shí)間是否符合題意即可.
解:?jiǎn)栴}1:不存在.理由:
要使四邊形PQCD是菱形,則四邊形PQCD一定是平行四邊形.
由例知當(dāng)t=4時(shí),四邊形PQCD是平行四邊形.
此時(shí)DP=12-t=8≠10,即DP≠DC,
所以按已知速度運(yùn)動(dòng),四邊形PQCD只能是平行四邊形,但不可能是菱形.
問(wèn)題2:如圖,由題意,得AP=t,DP=12-t,CQ=2t,BQ=18-2t.
要使四邊形PQBA是矩形,已有∠B=90°,AD∥BC,即AP∥BQ,只需滿足AP=BQ,即t=18-2t,解得t=6.
所以當(dāng)t=6時(shí),四邊形PQBA是矩形.
問(wèn)題3:不存在.理由:
要使四邊形PQBA是正方形,則四邊形PQBA一定是矩形.
由問(wèn)題2知當(dāng)t=6時(shí),四邊形PQBA是矩形.
此時(shí)AP=t=6≠8,即AP≠AB,
所以按已知速度運(yùn)動(dòng),四邊形PQBA只能是矩形,但不可能是正方形.
問(wèn)題4:當(dāng)△DQC是等腰三角形時(shí),分三種情況:
①如圖1,當(dāng)QC=DC時(shí),即2t=10,∴t=5.
②如圖2,當(dāng)DQ=DC時(shí),過(guò)點(diǎn)D作DH⊥CQ,
則QH=CH=CQ=t.
在Rt△DHC中,DH=8,CH=BC-AD=6,
∴DC==10,
∴t=6.
③如圖3,當(dāng)QD=QC時(shí),過(guò)點(diǎn)D作DH⊥CQ,DH=8,CH=6,DC=10,CQ=QD=2t,QH=2t-6.
在Rt△DQH中,DH2+QH2=DQ2.
∴82+(2t-6)2=(2t)2.
解得t=.
綜上,當(dāng)t=5或6或時(shí),△DQC是等腰三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=3,點(diǎn)E為射線BC上一個(gè)動(dòng)點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過(guò)點(diǎn)B′作AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年1月重慶湖童時(shí)裝周在重慶渝北舉行了八場(chǎng)走秀,云集了八大國(guó)內(nèi)外潮童品牌,不僅為大家?guī)?lái)了一場(chǎng)品牌走秀盛會(huì),更讓人們將目光轉(zhuǎn)移到了后、后童模群體身上,開(kāi)啟服裝新秀湖流.某大型商場(chǎng)抓住這次商機(jī)購(gòu)進(jìn)兩款新童裝進(jìn)行試銷售,該商場(chǎng)用元購(gòu)買款童裝,用元購(gòu)買款童裝,且每件款童裝進(jìn)價(jià)與每件款童裝進(jìn)價(jià)相同,購(gòu)買款童裝的數(shù)量比款童裝的數(shù)量少件,若該商場(chǎng)本次以每件款童裝按進(jìn)價(jià)加價(jià)元進(jìn)行銷售,每件款童裝按進(jìn)價(jià)加價(jià)進(jìn)行銷售,全部銷售完.
(1)求購(gòu)進(jìn)兩款童裝各多少件?
(2)春節(jié)期間該商場(chǎng)按上次進(jìn)價(jià)又購(gòu)進(jìn)與上一次一樣數(shù)量的兩款童裝,并展開(kāi)了降價(jià)促銷活動(dòng),在促銷期間,該商場(chǎng)將每件款童裝按進(jìn)價(jià)提高進(jìn)行銷售,每件款童裝按上次售價(jià)降低銷售.結(jié)果全部銷售完后銷售利潤(rùn)比上次利潤(rùn)少了元,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,PA為⊙O的切線,A為切點(diǎn),直線PO交⊙O于點(diǎn)E,F(xiàn)過(guò)點(diǎn)A作PO的垂線AB垂足為D,交⊙O于點(diǎn)B,延長(zhǎng)BO與⊙O交與點(diǎn)C,連接AC,BF.
(1)求證:PB與⊙O相切;
(2)是探究線段EF,OD,OP之間的數(shù)量關(guān)系,并加以證明;
(3)若tan∠F= ,求cos∠ACB的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,正方形ABCD的邊長(zhǎng)為6,△ABE是等邊三角形,點(diǎn)E在正方形ABCD內(nèi),在對(duì)角線AC上有一點(diǎn)P,使PD+PE的和最小,則這個(gè)最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,F是AD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF。
(1)求證:四邊形CEDF是平行四邊形;
(2)若AB=4,AD=6,∠B=60°,求DE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知如圖1,線段AB、CD相交于點(diǎn)O,連接AD、CB,我們把形如圖1的圖形稱之為“8字形”.試解答下列問(wèn)題:
(1)在圖1中,寫出∠A,∠B,∠C,∠D之間的關(guān)系為
(2)如圖2,在圖1的結(jié)論下,∠DAB和∠BCD的平分線AP和CP相交于點(diǎn)P,并且與CD、AB分別相交于M、N.
①仔細(xì)觀察,在圖2中“8字形”的個(gè)數(shù):______個(gè);
②若,,試求∠P的度數(shù);
③∠B和∠D為任意角時(shí),其他條件不變,試直接寫出∠P與∠B,∠D之間的數(shù)量關(guān)系,不需要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AC的垂直平分線分別交AC、BC于E,D兩點(diǎn),EC=4,△ABC的周長(zhǎng)為23,則△ABD的周長(zhǎng)為( )
A.13
B.15
C.17
D.19
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD的對(duì)角線相交于點(diǎn)O,且點(diǎn)O是BD的中點(diǎn),若AB=AD=5,BD=8,∠ABD=∠CDB,則四邊形ABCD的面積為( )
A.40B.24C.20D.15
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com