【題目】如圖,在ABCD中,FAD的中點(diǎn),延長(zhǎng)BC到點(diǎn)E,使CE=BC,連結(jié)DE,CF

1)求證:四邊形CEDF是平行四邊形;

2)若AB=4,AD=6,∠B=60°,求DE的長(zhǎng)。

【答案】1)見(jiàn)解析(2

【解析】

試題(1)由平行四邊形的對(duì)邊平行且相等的性質(zhì)推知AD∥BC,且AD=BC;然后根據(jù)中點(diǎn)的定義、結(jié)合已知條件推知四邊形CEDF的對(duì)邊平行且相等(DF=CE,且DF∥CE),即四邊形CEDF是平行四邊形;

2)如圖,過(guò)點(diǎn)DDH⊥BE于點(diǎn)H,構(gòu)造含30度角的直角△DCH和直角△DHE.通過(guò)解直角△DCH和在直角△DHE中運(yùn)用勾股定理來(lái)求線段ED的長(zhǎng)度.

試題解析:(1)證明:在ABCD中,AD∥BC,且AD=BC

∵FAD的中點(diǎn),

∴DF=AD

∵CE=BC,

∴DF=CE,且DF∥CE,

四邊形CEDF是平行四邊形;

如圖,過(guò)點(diǎn)DDH⊥BE于點(diǎn)H

ABCD中,∵∠B=60°

∴∠DCE=60°

∵AB=4,

∴CD=AB=4

∴CH=CD=2,DH=2

CEDF中,CE=DF=AD=3,則EH=1

Rt△DHE中,根據(jù)勾股定理知DE=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】又到了一年中的春游季節(jié).某班學(xué)生利用周末去參觀“三軍會(huì)師紀(jì)念塔”.下面是兩位同學(xué)的一段對(duì)話:
甲:我站在此處看塔頂仰角為60°;
乙:我站在此處看塔頂仰角為30°;
甲:我們的身高都是1.6m;
乙:我們相距36m.
請(qǐng)你根據(jù)兩位同學(xué)的對(duì)話,計(jì)算紀(jì)念塔的高度.(精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的方程kx2+(2k+1)x+2=0.
(1)求證:無(wú)論k取任何實(shí)數(shù)時(shí),方程總有實(shí)數(shù)根.
(2)是否存在實(shí)數(shù)k使方程兩根的倒數(shù)和為2?若存在,請(qǐng)求出k的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)A(a,3),B(b,1)都在雙曲線y= 上,點(diǎn)C,D,分別是x軸,y軸上的動(dòng)點(diǎn),則四邊形ABCD周長(zhǎng)的最小值為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀下列例題的解題過(guò)程,并完成相關(guān)問(wèn)題

例:如圖,在四邊形ABCD中,ADBC,∠B90°,AB8 cm,AD12cm,BC18cm,點(diǎn)P從點(diǎn)A出發(fā),以1cm/s的速度向點(diǎn)D運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C同時(shí)出發(fā),以2cm/s的速度向點(diǎn)B運(yùn)動(dòng).規(guī)定其中一個(gè)動(dòng)點(diǎn)到達(dá)端點(diǎn)時(shí),另一個(gè)動(dòng)點(diǎn)也隨之停止運(yùn)動(dòng).從運(yùn)動(dòng)開(kāi)始,使PQCDPQCD,分別經(jīng)過(guò)多長(zhǎng)時(shí)間?為什么?

解:設(shè)經(jīng)過(guò)ts時(shí),PQCDPQCD,此時(shí)四邊形PQCD為平行四邊形.

PD=(12tcm,CQ2t cm

12t2t.∴t4

∴當(dāng)t4時(shí),PQCD,且PQCD

設(shè)經(jīng)過(guò)ts時(shí),PQCD,分別過(guò)點(diǎn)P,DBC邊的垂線PE,DF,垂足分別為E,F

當(dāng)CFEQ時(shí),四邊形PQCD為梯形(腰相等)或者平行四邊形.

∵∠B=∠A=∠DFB90°

∴四邊形ABFD是矩形.∴ADBF

AD12 cm,BC18 cm

CFBCBF6 cm

當(dāng)四邊形PQCD為梯形(腰相等)時(shí),

PD2BCAD)=CQ,

∴(12t)+122t.∴t8

∴當(dāng)t8時(shí),PQCD

當(dāng)四邊形PQCD為平行四邊形時(shí),由知當(dāng)t4時(shí),PQCD

綜上,當(dāng)t4時(shí),PQCD;當(dāng)t4t8時(shí),PQCD

問(wèn)題1:在整個(gè)運(yùn)動(dòng)過(guò)程中是否存在t值,使得四邊形PQCD是菱形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.

問(wèn)題2:從運(yùn)動(dòng)開(kāi)始,當(dāng)t取何值時(shí),四邊形PQBA是矩形?

問(wèn)題3:在整個(gè)運(yùn)動(dòng)過(guò)程中是否存在t值,使得四邊形PQBA是正方形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.

問(wèn)題4:是否存在t,使得△DQC是等腰三角形?若存在,請(qǐng)求出t值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某商場(chǎng)為了吸引顧客,設(shè)立了一可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,AB為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費(fèi)100元(含100元)以上,就能獲得一次轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)9折、8折、7折區(qū)域,顧客就可以獲得相應(yīng)的優(yōu)惠.

(1)某顧客正好消費(fèi)99元,是否可以獲得相應(yīng)的優(yōu)惠.

(2)某顧客正好消費(fèi)120元,他轉(zhuǎn)一次轉(zhuǎn)盤獲得三種打折優(yōu)惠的概率分別是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(6分)△ABC與△A′B′C′在平面直角坐標(biāo)系中的位置如圖.

(1)分別寫(xiě)出下列各點(diǎn)的坐標(biāo):A′ B′ ;C′ ;

(2)說(shuō)明△A′B′C′由△ABC經(jīng)過(guò)怎樣的平移得到?

(3)若點(diǎn)P(a,b)是△ABC內(nèi)部一點(diǎn),則平移后△A′B′C′內(nèi)的對(duì)應(yīng)點(diǎn)P′的坐標(biāo)為 ;

(4)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,D,E為斜邊AB上的兩個(gè)點(diǎn),且BD=BC,AE=AC,則∠DCE的大小為(度).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的頂點(diǎn)A的坐標(biāo)為(﹣4,0),頂點(diǎn)B在第二象限,∠BAO=60°,BC交y軸于點(diǎn)D,DB:DC=3:1.若函數(shù)y= (k>0,x>0)的圖象經(jīng)過(guò)點(diǎn)C,則k的值為( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案