(1)觀察發(fā)現(xiàn):
如(a)圖,若點A,B在直線l同側,在直線l上找一點P,使AP+BP的值最。
做法如下:作點B關于直線l的對稱點B',連接AB',與直線l的交點就是所求的點P.再如(b)圖,在等邊三角形ABC中,AB=2,點E是AB的中點,AD是高,在AD上找一點P,使BP+PE的值最。
做法如下:作點B關于AD的對稱點,恰好與點C重合,連接CE交AD于一點,則這點就是所求的點P,故BP+PE的最小值為______.
(2)實踐運用:
如(c)圖,已知⊙O的直徑CD為4,∠AOD的度數(shù)為60°,點B是
AD
的中點,在直徑CD上找一點P,使BP+AP的值最小,并求BP+AP的最小值.
(3)拓展延伸:
如(d)圖,在四邊形ABCD的對角線AC上找一點P,使∠APB=∠APD.保留作圖痕跡,不必寫出作法.
(1)BP+PE的最小值=
BC2-BE2
=
22-12
=
3


(2)作點A關于CD的對稱點A′,連接A′B,交CD于點P,連接OA′,AA′,OB.
∵點A與A′關于CD對稱,∠AOD的度數(shù)為60°,
∴∠A′OD=∠AOD=60°,PA=PA′,
∵點B是
AD
的中點,
∴∠BOD=30°,
∴∠A′OB=∠A′OD+∠BOD=90°,
∵⊙O的直徑CD為4,
∴OA=OA′=2,
∴A′B=2
2

∴PA+PB=PA′+PB=A′B=2
2


(3)如圖d:首先過點B作BB′⊥AC于O,且OB=OB′,
連接DB′并延長交AC于P.
(由AC是BB′的垂直平分線,可得∠APB=∠APD).
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

操作與探究:
在八年級探究“直角三角形斜邊上的中線等于斜邊的一半”這個結論時,我們是將一塊直角三角形紙片按照圖①方法折疊(點A與點C重合,DE為折痕).再將圖①中的△CBE沿對稱軸EF折疊(如圖②),通過折疊,可以發(fā)現(xiàn)CE=AE=BE=
1
2
AB.
(1)在上述的折疊過程中,我們還可以發(fā)現(xiàn)原三角形恰好折成兩個重合的矩形,其中一個是內接矩形,另一個是拼合(指無縫無重疊)所成的矩形,我們稱這樣的兩個矩形為“組合矩形”.你能將圖③中的△ABC折疊成一個組合矩形嗎?如果能折成,請在圖③中畫出折痕;
(2)有一些特殊的四邊形,如菱形,通過折疊也能折成組合矩形(其中的內接矩形的四個頂點分別在原四邊形的四條邊上).請你進一步探究,一個非特殊的四邊形(指除平行四邊形、梯形外的四邊形)滿足什么條件時,一定能折成組合矩形?
滿足的條件是______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,菱形ABCD中,∠BAD=60°,M是AB的中點,P是對角線AC上的一個動點,若AB長是3,則PM+PB的最小值為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

我們知道三角形的一條中線能將這個三角形分成面積相等的兩個三角形,反之,若經(jīng)過三角形的一個頂點引一條直線將這個三角形分成面積相等兩個三角形,那么這條直線平分三角形的這個頂點的對邊.如圖1,若S△ABD=S△ADC,則BD=CD成立.
請你直接應用上述結論解決以下問題:

(1)已知:如圖2,AD是△ABC的中線,沿AD翻折△ADC,使點C落在點E,DE交AB于F,若△ADE與△ADB重疊部分面積等于△ABC面積的
1
4
,問線段AE與線段BD有什么關系?在圖中按要求畫出圖形,并說明理由.
(2)已知:如圖3,在△ABC中,∠ACB=90°,AC=2,AB=4,點D是AB邊的中點,點P是BC邊上的任意一點,連接PD,沿PD翻折△ADP,使點A落在E,若△PDE與△PDB重疊部分的面積等于△ABP面積的
1
4
,直接寫出BP2的值.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖矩形紙片ABCD中,AB=4,AC=3,將紙片折疊,使點B落在邊CD上的B′處,折痕為AE.在折痕AE上存在一點P到邊CD的距離與到點B的距離相等,則此相等距離為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,沿DE折疊長方形ABCD的一邊,使點C落在AB邊上的點F處,若AD=8,且△AFD的面積為60,則△DEC的面積為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

下列圖形中,是軸對稱圖形的是( 。
A.任意兩個點B.梯形C.平行四邊形D.任意三角形

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

已知長方形的長AD=10,AB=8,將它沿著AE折疊,使得D點恰好落在BC邊上,則S△CD1E=______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

請畫出點A關于直線MN對稱的點A′.

查看答案和解析>>

同步練習冊答案