【題目】已知:如圖 AD 是∠BAC 的平分線,且 DFAC F,∠B=90°,DE=DC.

1)求證:BE=CF.

2)若ADE DCF 的面積分別是125,求ABC 的面積.

3)請(qǐng)你寫出∠BAC與∠CDE有什么數(shù)量關(guān)系?并說明理由.

【答案】1)詳見解析;(239;(3)互補(bǔ);

【解析】

1)先由角平分線的性質(zhì)就可以得出DB=DF,再證明△BDE≌△FDC就可以求出結(jié)論.(2)由△BDE和△FDC面積相等,△ABD△ADF面積相等,轉(zhuǎn)換得出△ABC的面積即可;(3)通過∠ACD=BED推出∠ACD+ AED=180°,再通過四邊形AEDC的內(nèi)角和為360°即可求出∠BAC與∠CDE的關(guān)系.

1)證明:

∵∠B=90°,

BDAB

AD為∠BAC的平分線,且DFAC,

DB=DF

RtBDERtFDC中,

RtBDERtFDCHL),

BE=CF

2)解:∵△BDE△FDC

△ BDE的面積為5,

SABD=17

AD平分∠BAC,DB⊥AB,DF⊥AC

∴S△ABD=S△ADF=17,

SABC=17+17+5=39

3)解:∵△BDE≌△FDC

∴∠ACD=∠BED

∠ BED+∠AED=180°,

∴∠ACD+AED=180°

在四邊形AEDC中,

∵四邊形內(nèi)角和為360°,∠ACD+AED=180°,

∴∠BAC +∠CDE=180°,即∠BAC 與∠CDE互補(bǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD與四邊形CEFG是兩個(gè)正方形,邊長分別為a,b,其中B,C,E在一條直線上,G在線段CD上,三角形AGE的面積為S.

(1)①當(dāng)a=5,b=3時(shí),求S的值;

②當(dāng)a=7b=3時(shí),求S的值;

(2)從以上結(jié)果中,請(qǐng)你猜想Sa,b中的哪個(gè)量有關(guān)?用字母a,b表示S,并對(duì)你的猜想進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ABC的周長是21,BO、CO分別平分∠ABC和∠ACB,ODBCD,OEAB,OFAC,且OD=3

1)試判斷線段OD、OE、OF的大小關(guān)系.

2)求ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),點(diǎn)A(1,0),點(diǎn)B(0, ),把△ABO繞點(diǎn)O順時(shí)針旋轉(zhuǎn),得A′B′O,記旋轉(zhuǎn)角為α.

(Ⅰ)如圖①,當(dāng)α=30°時(shí),求點(diǎn)B′的坐標(biāo);

(Ⅱ)設(shè)直線AA′與直線BB′相交于點(diǎn)M.

如圖②,當(dāng)α=90°時(shí),求點(diǎn)M的坐標(biāo);

②點(diǎn)C(﹣1,0),求線段CM長度的最小值.(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)B在線段AC上,點(diǎn)E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點(diǎn)。試探索BM和BN的關(guān)系,并證明你的結(jié)論。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)的許多創(chuàng)新和發(fā)展都位居世界前列,如南宋數(shù)學(xué)家楊輝(約13世紀(jì))所著的《詳解九章算術(shù)》一書中,用如圖的三角形解釋二項(xiàng)式乘方(a+bn的展開式的各項(xiàng)系數(shù),此三角形稱為楊輝三角

根據(jù)楊輝三角請(qǐng)計(jì)算(a+b64的展開式中第三項(xiàng)的系數(shù)為(

A. 2016 B. 2017 C. 2018 D. 2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,BAC=90°,AC=2AB,點(diǎn)DAC的中點(diǎn).將一塊銳角為45°的直角三角板如圖放置,使三角板斜邊的兩個(gè)端點(diǎn)分別與A、D重合,連接BE、EC

試猜想線段BEEC的數(shù)量及位置關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)的坐標(biāo)為

1)若點(diǎn)軸上,求點(diǎn)坐標(biāo).

2)若點(diǎn)P到兩坐標(biāo)軸的距離相等,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB60°,CBO延長線上一點(diǎn),OC12cm,動(dòng)點(diǎn)P從點(diǎn)C出發(fā)沿CB2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)O出發(fā)沿OA1cm/s的速度移動(dòng),如果點(diǎn)P、Q同時(shí)出發(fā),用ts)表示移動(dòng)的時(shí)間,當(dāng)t_____s時(shí),△POQ是等腰三角形.

查看答案和解析>>

同步練習(xí)冊(cè)答案