【題目】如圖,某二次函數(shù)的圖象是一條頂點為P(4.-4)的拋物線,它經(jīng)過原點和點A,它的對稱軸交線段
OA于點M.點N在對移軸上,且點M、N關(guān)于點P對稱,連接AN,ON
(1)求此二次函數(shù)的解析式:
(2)若點A的坐標是(6,-3).,請直接寫出MN的長
(3)若點A在拋物線的對稱軸右側(cè)運動時,則∠ANM與∠ONM有什么數(shù)量關(guān)系?并證明.
【答案】(1)y=(x-4)2-4;(2)4;(3)∠ANM=∠ONM,理由見解析
【解析】
(1)根據(jù)二次函數(shù)圖象的頂點設(shè)出二次函數(shù)的關(guān)系式,再很據(jù)二次函數(shù)圖象經(jīng)過原點,求出a的值,即可得出二次函數(shù)的關(guān)系式;
(2)設(shè)直線OA的解析式為y=kx,將A點代入,求出直線OA的解析式,再把x=4代入y=-x,求出M的坐標,根據(jù)點M、N關(guān)于點P對稱,求出N的坐標,從而得出MN的長;
(3)過A作AH垂直于直線l,直線l與x軸交于點D,由A在二次函數(shù)圖象上,設(shè)A橫坐標為m,將x=m代入二次函數(shù)解析式,表示出縱坐標,確定出A的坐標,再由O的坐標,表示出直線AO的解析式,進而表示出M,N及H的坐標,得出OD,ND,HA,及NH,在直角三角形OND中,利用銳角三角函數(shù)定義表示出tan∠ONM,在直角三角形ANH中,利用銳角三角函數(shù)定義表示出tan∠ANM,化簡后得到tan∠ONM=tan∠ANM,可得出∠ONM=∠ANM,得證.
解:(1)∵二次函數(shù)圖象的頂點為P(4,-4),
∴設(shè)二次函數(shù)的關(guān)系式為y=a(x-4)2-4,
又∵二次函數(shù)圖象經(jīng)過原點(0,0),
∴0=a(0-4)2-4,
解得a=,
∴二次函數(shù)的關(guān)系式為y=(x-4)2-4;
(2)設(shè)直線OA的解析式為y=kx,將A(6,-3)代入得-3=6k,解得k=-,
∴直線OA的解析式為y=-x,
把x=4代入y=-x得y=-2,
∴M的坐標是(4,-2),
又∵點M、N關(guān)于點P對稱,
∴N的坐標是(4,-6),
∴MN=4,
(3)過A作AH⊥l于H,l與x軸交于點D,如圖所示:
設(shè)A(m,m2-2m),又O(0,0),
∴直線AO的解析式為y=
則M(4,m-8),N(4,-m),H(4,m2-2m),
∴OD=4,ND=m,HA=m-4,NH=ND-HD=m2-m,
在Rt△OND中,tan∠ONM=,
在Rt△ANH中,tan∠ANM=
∴tan∠ONM=tan∠ANM,
則∠ANM=∠ONM.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知A(3,0),B(0,-1),連接AB,過B點作AB的垂線段,使BA=BC,連接AC.
(1)如圖1,求C點坐標;
(2)如圖2,若P點從A點出發(fā),沿x軸向左平移,連接BP,作等腰直角三角形△BPQ,連接CQ.求證:PA=CQ.
(3)在(2)的條件下,若C、P、Q三點共線,求此時P點坐標及∠APB的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動點M,N同時從B點出發(fā),分別沿B→A,B→C運動,速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當點N到達終點C時,點M也隨之停止運動.設(shè)運動時間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時間t,使△PNB∽△PAD,并求出它們的相似比;
(3)若在運動過程中,存在某時刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了推動全社會自覺尊法學法守法用法,促進全面依法治國,某區(qū)每年都舉辦普法知識競賽,該區(qū)某單位甲、乙兩個部門各有員工200人,要在這兩個部門中挑選一個部門代表單位參加今年的競賽,為了解這兩個部門員工對法律知識的掌握情況,進行了抽樣調(diào)查,從甲、乙兩個部門各隨機抽取20名員工,進行了法律知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行整理,描述和分析,下面給出了部分信息.
a.甲部門成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部門成績?nèi)缦拢?/span>
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙兩部門成績的平均數(shù)、方差、中位數(shù)如下:
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年該單位參賽員工進入復(fù)賽的出線成績?nèi)缦拢?/span>
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出線成績(百分制) | 79 | 81 | 80 | 81 | 82 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值;
(2)可以推斷出選擇 部門參賽更好,理由為 ;
(3)預(yù)估(2)中部門今年參賽進入復(fù)賽的人數(shù)為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖AB是圓O的直徑,射線AM⊥AB于點A.點D在AM上,連接OD交圓O于點E,過點D作DC=DA.交圓O于點C(A,C不重合),連接BC,CE.
(1)求證:CD是圓O的切線;
(2)若四邊形OECB是菱形,圓O的直徑AB=2,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工“適度取餐,減少浪費”該公司共有10個部門,且各部門的人數(shù)相同.為了解午餐的浪費情況,從這10個部門中隨機抽取了兩個部門,進行了連續(xù)四周(20個工作日)的調(diào)查,得到這兩個部門每天午餐浪費飯菜的重量,以下簡稱“每日餐余重量”(單位:千克),并對這些數(shù)據(jù)進行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,,):
.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8
.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8
. 兩個部門這20個工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:
部門 | 平均數(shù) | 中位數(shù) | 眾數(shù) |
| 6.4 |
| 7.0 |
/p> | 6.6 | 7.2 |
|
根據(jù)以上信息,回答下列問題:
(1)寫出表中的值;
(2)在這兩個部門中,“適度取餐,減少浪費”做得較好的部門是________(填“”或“”),理由是____________;
(3)結(jié)合這兩個部門每日餐余重量的數(shù)據(jù),估計該公司(10個部門)一年(按240個工作日計算)的餐余總重量.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時,y隨x的增大而減。虎蹮o論a取何值,拋物線的頂點始終在同一條直線上;④無論a取何值,函數(shù)圖象都經(jīng)過同一個點.其中所有正確的結(jié)論是___.(填寫正確結(jié)論的序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點A(1,﹣k+4).
(1)試確定這兩函數(shù)的表達式;
(2)求出這兩個函數(shù)圖象的另一個交點B的坐標,并求△AOB的面積;
(3)根據(jù)圖象直接寫出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,菱形ABCD的邊AB在x軸上,點B坐標(﹣3,0),點C坐標(0,4),點P從原點O出發(fā),以每秒一個單位長度的速度沿x軸正方向移動,移動時間為t(0≤t≤5)秒,過點P作平行于y軸的直線l,直線l掃過四邊形OCDA的面積為S.
(1)求直線AD的函數(shù)表達式;
(2)當S=時,請直接寫出t的值;
(3)如果點M是(2)中的直線1上的點,點N在x軸上,并且以A,D,M,N為頂點的四邊形是平行四邊形,請直接寫出點N的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com