【題目】將一副直角三角板如圖①擺放,能夠發(fā)現(xiàn)等腰直角三角板ABC的斜邊與含30°角的直角三角板DEF的長(zhǎng)直角邊DE重合.DF=8.
(1)若P是BC上的一個(gè)動(dòng)點(diǎn),當(dāng)PA=DF時(shí),求此時(shí)∠PAB的度數(shù);
(2)將圖①中的等腰直角三角板ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn)30°,點(diǎn)C落在BF上,AC與BD交于點(diǎn)O,連接CD,如圖②.
①求證:AD∥BF;
②若P是BC的中點(diǎn),連接FP,將等腰直角三角板ABC繞點(diǎn)B繼續(xù)旋轉(zhuǎn),當(dāng)旋轉(zhuǎn)角α= 時(shí),F(xiàn)P長(zhǎng)度最大,最大值為 (直接寫(xiě)出答案即可).
【答案】(1)∠PAB的度數(shù)為15°或75°;
(2)①見(jiàn)試題解析;
②210°,16+4.
【解析】
試題分析:(1)利用銳角三角函數(shù)求出∠APH,然后分兩種情況計(jì)算即可;
(2)①作出AM⊥BC,DN⊥BC,得到AM∥DN,在計(jì)算出AM,DN,得到AM=DN,出現(xiàn)平行四邊形AMND,②先判斷出PF最大時(shí),點(diǎn)P落在FB的延長(zhǎng)線上,再求解即可.
如圖1,
D,
試題解析:(1)作AH⊥BC于H,∴AH=BC,∵DF=8,∠DEF=30°,∴BC=DE==8,
∴AH=4,當(dāng)PA=DF=8時(shí),sin∠APH==,∴∠APH=60°,
①∵∠ABC=45°,∠AP1H=60°,∴∠BAP1=∠AP1H﹣∠ABC=15°,
②∵∠ACB=45°,∠AP2H=60°,∴∠CAP2=∠AP2B﹣∠ACB=15°,
∵∠BAC=90°,∴∠BAP2=90°﹣∠CAP2=75°;∴∠PAB的度數(shù)為15°或75°;
(2)①如圖2作AM⊥BC,DN⊥BC,在Rt△ABC中,AB=AC,BC=8,
∴AM=BC=×8=4,在Rt△BCF中,∠F=60°,DF=8,∴DN=DF×sin∠F=8×=4,
∴AM=DN,∵AM∥DN,∴四邊形AMND是平行四邊形,∴AD∥BC;
②∵P是BC的中點(diǎn),且FP長(zhǎng)度最大,則有點(diǎn)F,B,P在同一條直線上,
即:點(diǎn)P在FB的延長(zhǎng)線上,
∴BC邊旋轉(zhuǎn)180°,
∵∠CDF=30°,
∴旋轉(zhuǎn)角α=210°,
∵P是BC的中點(diǎn),BC=8,
∴BP=4,
∵BF=2DF=16,
∴FP=16+4,
故答案為210°,16+4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是菱形,對(duì)角線AC,BD相交于點(diǎn)O,DH⊥AB于H,連接OH,求證:∠DHO=∠DCO.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把含30°角的三角板放置在如圖所示的平面直角坐標(biāo)系中,∠AOB=90°,∠B=30°,OA=2,斜邊AB∥x軸,點(diǎn)A在雙曲線上.
(1)求雙曲線的解析式;
(2)把三角板AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使得點(diǎn)O的對(duì)應(yīng)點(diǎn)C落在x軸的負(fù)半軸上的對(duì)應(yīng)線段為AD,試判斷點(diǎn)D是否在雙曲線上?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=4,D是AB的中點(diǎn),點(diǎn)E,F(xiàn)分別在AC,BC邊上運(yùn)動(dòng)(點(diǎn)E不與點(diǎn)A,C重合),且保持ED⊥FD,連接DE,DF,EF,在此運(yùn)動(dòng)變化的過(guò)程中,有下列結(jié)論:
①AE=CF;
②EF最大值為2;
③四邊形CEDF的面積不隨點(diǎn)E位置的改變而發(fā)生變化;
④點(diǎn)C到線段EF的最大距離為.
其中結(jié)論正確的有 (把所有正確答案的序號(hào)都填寫(xiě)在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(﹣2,1),B(﹣4,5),C(﹣5,2).
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的△A1B1C1.
(2)畫(huà)出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A2B2C2.
(3)畫(huà)出△ABC繞圓心O順時(shí)針旋轉(zhuǎn)90°的△A3B3C3.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)將一種商品A按標(biāo)價(jià)的9折出售(即優(yōu)惠10%)仍可獲利潤(rùn)10%,若商品A的標(biāo)價(jià)為33元,則該商品的進(jìn)價(jià)為( )
A. 27元 B. 29.7元 C. 30.2元 D. 31元
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是某汽車(chē)行駛的路程s(km)與時(shí)間t(分鐘) 的函數(shù)關(guān)系圖。觀察圖中所提供的信息,解答下列問(wèn)題:
(1)求汽車(chē)在前9分鐘內(nèi)的平均速度.
(2)汽車(chē)在中途停留的時(shí)間.
(3)求該汽車(chē)行駛30千米的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于y=2(x-3)2+2的圖象,下列敘述正確的是( )
A. 頂點(diǎn)坐標(biāo)為(-3,2) B. 對(duì)稱(chēng)軸為直線x=-3
C. 當(dāng)x>3時(shí),y隨x的增大而增大 D. 當(dāng)x>3時(shí),y隨x的增大而減小
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com