如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應保證相似圖形的“接近度”相等.
(1)設菱形相鄰兩個內角的度數(shù)分別為m°和n°,將菱形的“接近度”定義為|m﹣n|,于是|m﹣n|越小,菱形越接近于正方形.
①若菱形的一個內角為70°,則該菱形的“接近度”等于 _________ ;
②當菱形的“接近度”等于 _________ 時,菱形是正方形.
(2)設矩形相鄰兩條邊長分別是a和b(a≤b),將矩形的“接近度”定義為|a﹣b|,于是|a﹣b|越小,矩形越接近于正方形.
你認為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
(1)①40 ②0 (2)不合理.理由見解析
【解析】
試題分析:(1)根據(jù)相似圖形的定義知,相似圖形的形狀相同,但大小不一定相同,相似圖形的“接近度”相等.所以若菱形的一個內角為70°,則該菱形的“接近度”等于|m﹣n|;當菱形的“接近度”等于0時,菱形是正方形;
(2)不合理,舉例進行說明.
解:(1)①∵內角為70°,
∴與它相鄰內角的度數(shù)為110°.
∴菱形的“接近度”=|m﹣n|=|110﹣70|=40.
②當菱形的“接近度”等于0時,菱形是正方形.
(2)不合理.
例如,對兩個相似而不全等的矩形來說,它們接近正方形的程度是相同的,但|a﹣b|卻不相等.
合理定義方法不唯一.
如定義為,
越小,矩形越接近于正方形;
越大,矩形與正方形的形狀差異越大;
當時,矩形就變成了正方形.
考點:相似圖形;菱形的性質;正方形的性質.
點評:正確理解“接近度”的意思,矩形的“接近度”|a﹣b|越小,矩形越接近于正方形.這是解決問題的關鍵.
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2007年初中畢業(yè)升學考試(江蘇常州卷)數(shù)學(帶解析) 題型:解答題
如圖,菱形、矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應保證相似圖形的“接近度”相等.
(1)設菱形相鄰兩個內角的度數(shù)分別為和,將菱形的“接近度”定義為,于是,越小,菱形越接近于正方形.
①若菱形的一個內角為,則該菱形的“接近度”等于 ;
②當菱形的“接近度”等于 時,菱形是正方形.
(2)設矩形相鄰兩條邊長分別是和(),將矩形的“接近度”定義為,于是越小,矩形越接近于正方形.
你認為這種說法是否合理?若不合理,給出矩形的“接近度”一個合理定義.
查看答案和解析>>
科目:初中數(shù)學 來源:2013年初中數(shù)學單元提優(yōu)測試卷-相似圖形(解析版) 題型:填空題
如圖,菱形,矩形與正方形的形狀有差異,我們將菱形、矩形與正方形的接近程度稱為“接近度”.在研究“接近度”時,應保證相似圖形的“接近度”相等.設菱形相鄰兩個內角的度數(shù)分別為m°和n°,將菱形的“接近度”定義為|m﹣n|,于是,|m﹣n|越小,菱形越接近于正方形.
①若菱形的一個內角為70°,則該菱形的“接近度”等于 _________ ;
②當菱形的“接近度”等于 _________ 時,菱形是正方形.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com