【題目】如圖,ABC中,∠B=90°,tanBAC=,半徑為2的⊙O從點(diǎn)A開(kāi)始(圖1),沿AB向右滾動(dòng),滾動(dòng)時(shí)始終與AB相切(切點(diǎn)為D);當(dāng)圓心O落在AC上時(shí)滾動(dòng)停止,此時(shí)⊙OBC相切于點(diǎn)E(圖2).作OGAC于點(diǎn)G.

(1)利用圖2,求cosBAC的值;

(2)當(dāng)點(diǎn)D與點(diǎn)A重合時(shí)(如圖1),求OG;

(3)如圖3,在⊙O滾動(dòng)過(guò)程中,設(shè)AD=x,請(qǐng)用含x的代數(shù)式表示OG,并寫(xiě)出x的取值范圍.

【答案】(1)cosBAC=;(2)OG=;(3)OG=﹣x+,x的取值范圍是:0≤x≤4.

【解析】整體分析

(1)連接OD,Rt△AOD中用勾股定理求OA,用余弦的定義求解;(2)連接OA,則∠AOG=BAC,RtOAG中,用∠AOG的余弦求解;(3)連接ODAC于點(diǎn)F,x表示出OF,由∠FOG=BAC,利用∠FOG的余弦求解.

解:(1)如圖2,連接OD,

∵⊙OAB相切,∴ODAB,

tanBAC=,OD=2,AD=4,OA=

cosBAC==;

(2)如圖1,連接OA,

∵⊙OAB相切,∴OAAB,

又∵OGAC,∴∠AOG=90°﹣OAG=BAC,

cosAOG=cosBAC=.

cosAOG=

OG=OAcosAOG=2×=;

(3)如圖3,連接ODAC于點(diǎn)F,

∵⊙OAB相切,∴ODAB,∴∠FOG=90°﹣OFG,

又∵OGAC,∴∠BAC=90°﹣AFD,

又∵∠OFG=AFD,∴∠FOG=BAC,

tanBAC=,

FD=ADtanBAC=x,

OF=2﹣x,cosBAC=cosFOG=,

OG=OFcosFOG=(2﹣x)=﹣x+,x的取值范圍是:0≤x≤4.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在矩形ABCD中,AB=4cm,AD=12cm,點(diǎn)PAD邊上以每秒1cm的速度從點(diǎn)A向點(diǎn)D運(yùn)動(dòng),點(diǎn)QBC邊上,以每秒4cm的速度從點(diǎn)C出發(fā),在CB間往返運(yùn)動(dòng),兩個(gè)點(diǎn)同時(shí)出發(fā),當(dāng)點(diǎn)P到達(dá)點(diǎn)D時(shí)停止(同時(shí)點(diǎn)Q也停止),在這段時(shí)間內(nèi),線段PQ有( )次平行于AB?

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在數(shù)軸上點(diǎn)表示的數(shù)是點(diǎn)在點(diǎn)的右側(cè),且到點(diǎn)的距離是18;點(diǎn)在點(diǎn)與點(diǎn)之間,且到點(diǎn)的距離是到點(diǎn)距離的2.

(1)點(diǎn)表示的數(shù)是____________;點(diǎn)表示的數(shù)是_________;

(2)若點(diǎn)P從點(diǎn)出發(fā),沿?cái)?shù)軸以每秒4個(gè)單位長(zhǎng)度的速度向右勻速運(yùn)動(dòng);同時(shí),點(diǎn)Q從點(diǎn)B出發(fā),沿?cái)?shù)軸以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng)。設(shè)運(yùn)動(dòng)時(shí)間為秒,在運(yùn)動(dòng)過(guò)程中,當(dāng)為何值時(shí),點(diǎn)P與點(diǎn)Q之間的距離為6?

(3)在(2)的條件下,若點(diǎn)P與點(diǎn)C之間的距離表示為PC,點(diǎn)Q與點(diǎn)B之間的距離表示為在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻使得?若存在,請(qǐng)求出此時(shí)點(diǎn)表示的數(shù);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖:在數(shù)軸上 A 點(diǎn)表示數(shù) aB 點(diǎn)示數(shù) b,C 點(diǎn)表示數(shù) cb 是最大的負(fù)整數(shù),且 ab 滿足|a+ 3|+c62=0

1a= ,b= c= ;

2)若將數(shù)軸折疊,使得 A點(diǎn)與B 點(diǎn)重合,則點(diǎn) C與數(shù) 表示的點(diǎn)重合;

3)點(diǎn) A、BC開(kāi)始在數(shù)軸上運(yùn)動(dòng),若點(diǎn) A以每秒 2個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn) B 點(diǎn) C分別以每秒1個(gè)單位長(zhǎng)度和 4個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),假設(shè) t 秒鐘過(guò)后,若點(diǎn) A與點(diǎn) B之間的距離表示為 AB,點(diǎn) A與點(diǎn) C之間的距離表示為 AC,點(diǎn) B與點(diǎn) C之間的距離表示為 BC.則 AB= AC= ,BC= .(用 t的代數(shù)式表示)

4)請(qǐng)問(wèn):2BC+AB - AC的值是否隨著時(shí)間 t 的變化而改變?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一條不完整的數(shù)軸上從左到右有點(diǎn)A,B,D,C,其中AB2BD3,DC1,如圖所示,設(shè)點(diǎn)A,B,D,C所對(duì)應(yīng)數(shù)的和是p

1)若以B為原點(diǎn).寫(xiě)出點(diǎn)A,DC所對(duì)應(yīng)的數(shù),并計(jì)算p的值;

2)若原點(diǎn)O在圖中數(shù)軸上點(diǎn)C的右邊,且COx,p=﹣71,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖一,拋物線y=ax2+bx+cx軸正半軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,直線y=x-2經(jīng)過(guò)AC兩點(diǎn),且AB=2

1)求拋物線的解析式;

2)若直線DE平行于x軸并從C點(diǎn)開(kāi)始以每秒1個(gè)單位的速度沿y軸正方向平移,且分別交y軸、線段BC于點(diǎn)ED,同時(shí)動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿BO方向以每秒2個(gè)單位速度運(yùn)動(dòng),(如圖2);當(dāng)點(diǎn)P運(yùn)動(dòng)到原點(diǎn)O時(shí),直線DE與點(diǎn)P都停止運(yùn)動(dòng),連DP,若點(diǎn)P運(yùn)動(dòng)時(shí)間為t秒;設(shè)s=,當(dāng)t為何值時(shí),s有最小值,并求出最小值.

3)在(2)的條件下,是否存在t的值,使以P、B、D為頂點(diǎn)的三角形與△ABC相似;若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)y=﹣x+4,回答下列問(wèn)題:

(1)請(qǐng)?jiān)谟覉D的直角坐標(biāo)系中畫(huà)出函數(shù)y=﹣x+4圖象;

(2)y的值隨x值的增大而________;

(3)當(dāng)y=2時(shí),x的值為_________;

(4)當(dāng)y0時(shí),x的取值范圍是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】檢修小組從A地出發(fā),在東西路上檢修線路,若規(guī)定向東行駛的路程為正數(shù),向西行駛的路程為負(fù)數(shù),一天中行駛記錄(單位;千米)如下:

1)收工時(shí)檢修小組在A地的哪側(cè),距A地多遠(yuǎn)?

2)若每千米耗油0.3升,從出發(fā)到收工共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解初中學(xué)生每天在校體育活動(dòng)的時(shí)間(單位:h),隨機(jī)調(diào)査了該校的部分初中學(xué)生.根據(jù)調(diào)查結(jié)果,繪制出如下的統(tǒng)計(jì)圖①和圖②.請(qǐng)根據(jù)相關(guān)信息,解答下列問(wèn)題:

(Ⅰ)本次接受調(diào)查的初中學(xué)生人數(shù)為_(kāi)__________,圖①中m的值為_(kāi)____________;

(Ⅱ)求統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù);

(Ⅲ)根據(jù)統(tǒng)計(jì)的這組每天在校體育活動(dòng)時(shí)間的樣本數(shù)據(jù),若該校共有800名初中學(xué)生,估計(jì)該校每天在校體育活動(dòng)時(shí)間大于1h的學(xué)生人數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案