【題目】已知:如圖,,點(diǎn)是的中點(diǎn),平分,.
(1)求證:;
(2)若,試判斷的形狀,并說(shuō)明理由.
【答案】(1)見(jiàn)解析;(2)△ABC為等邊三角形
【解析】
(1)根據(jù)三線合一定理,得AD⊥BD,由角平分線的性質(zhì)定理,得BE=BD,即可得到,即可得到結(jié)論;
(2)由BE∥AC,則∠EAC=∠E=90°,由角平分線的性質(zhì),得到∠EAB=∠BAD=∠CAD=30°,則∠BAC=60°,即可得到答案.
(1)證明:如圖,
∵AB=AC ,點(diǎn)D是BC中點(diǎn)
∴AD⊥BD
∵AB平分∠DAE,AE⊥BE
∴BE=BD
∴
∴AD=AE;
(2)解:△ABC為等邊三角形
∵BE∥AC
∴∠EAC=∠E=90°
∵AB=AC ,AD是中線
∴AD平分∠BAC
∵AB平分∠DAE
∴∠EAB=∠BAD=∠CAD=30°
∴∠BAC=∠BAD+∠CAD=60°
∵AB=AC
∴△ABC是等邊三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.
(1)在方格紙中畫(huà)出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;
(2)在方格紙中畫(huà)出以CD為對(duì)角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;
(3)連接ME,并直接寫(xiě)出EM的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角三角形ABC中,
(1)過(guò)點(diǎn)A作AB的垂線與∠B的平分線相交于點(diǎn)D
(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);
(2)若∠A=30°,AB=2,則△ABD的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一個(gè)轉(zhuǎn)盤(pán)分成四等份,依次標(biāo)上數(shù)字1、2、3、4,若連續(xù)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)二次,指針指向的數(shù)字分別記作把作為點(diǎn)的橫、縱坐標(biāo).
【1】求點(diǎn)A(a,b)的個(gè)數(shù);
【2】求點(diǎn)A(a,b)在函數(shù)的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線與軸交于點(diǎn),點(diǎn)在直線上,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)作軸交直線點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.
(1)的值為 ;
(2)用含有的式子表示線段的長(zhǎng);
(3)若的面積為,求與之間的函數(shù)表達(dá)式,并求出當(dāng)最大時(shí)點(diǎn)的坐標(biāo);
(4)在(3)的條件下,把直線沿著軸向下平移,交軸于點(diǎn),交線段于點(diǎn),若點(diǎn)的坐標(biāo)為,在平移的過(guò)程中,當(dāng)時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,E為對(duì)角線AC上一點(diǎn),CE=CD,連接EB、ED,延長(zhǎng)BE交AD于點(diǎn)F.求證:DF2=EFBF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿B到C的方向運(yùn)動(dòng),且DE始終經(jīng)過(guò)點(diǎn)A,EF與AC交于M點(diǎn).
(1)求證:△ABE∽△ECM;
(2)探究:在△DEF運(yùn)動(dòng)過(guò)程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;
(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:
商品 | 甲 | 乙 |
進(jìn)價(jià)(元/件) | ||
售價(jià)(元/件) | 200 | 100 |
若用360元購(gòu)進(jìn)甲種商品的件數(shù)與用180元購(gòu)進(jìn)乙種商品的件數(shù)相同.
(1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?
(2)若超市銷(xiāo)售甲、乙兩種商品共50件,其中銷(xiāo)售甲種商品為件(),設(shè)銷(xiāo)售完50件甲、乙兩種商品的總利潤(rùn)為元,求與之間的函數(shù)關(guān)系式,并求出的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的兩倍,則稱(chēng)這樣的三角形為“倍角三角形”.
(1)如圖1,△ABC中,AB=AC,∠A為36°,求證:△ABC 是銳角三角形;
(2)若△ABC是倍角三角形,,∠B=30°,AC=,求△ABC面積;
(3)如圖2,△ABC的外角平分線AD與CB的延長(zhǎng)線相交于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使得AE=AB,若AB+AC=BD,請(qǐng)你找出圖中的倍角三角形,并進(jìn)行證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com