【題目】已知:如圖,,點(diǎn)的中點(diǎn),平分,.

1)求證:;

2)若,試判斷的形狀,并說(shuō)明理由.

【答案】1)見(jiàn)解析;(2ABC為等邊三角形

【解析】

1)根據(jù)三線合一定理,得ADBD,由角平分線的性質(zhì)定理,得BE=BD,即可得到,即可得到結(jié)論;

2)由BEAC,則∠EAC=∠E=90°由角平分線的性質(zhì),得到∠EAB=∠BAD=∠CAD=30°,則BAC60°,即可得到答案.

(1)證明:如圖,

AB=AC ,點(diǎn)DBC中點(diǎn)

ADBD

AB平分∠DAE,AEBE

BE=BD

AD=AE

2)解:ABC為等邊三角形

BEAC

∴∠EAC=E=90°

AB=AC ,AD是中線

AD平分∠BAC

AB平分∠DAE

∴∠EAB=BAD=CAD=30°

∴∠BAC=∠BAD+CAD60°

ABAC

∴△ABC是等邊三角形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在每個(gè)小正方形的邊長(zhǎng)均為1的方格紙中,有線段AB和線段CD,點(diǎn)A、B、C、D均在小正方形的頂點(diǎn)上.

(1)在方格紙中畫(huà)出以AB為斜邊的等腰直角三角形ABE,點(diǎn)E在小正方形的頂點(diǎn)上;

(2)在方格紙中畫(huà)出以CD為對(duì)角線的矩形CMDN(頂點(diǎn)字母按逆時(shí)針順序),且面積為10,點(diǎn)M、N均在小正方形的頂點(diǎn)上;

(3)連接ME,并直接寫(xiě)出EM的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角三角形ABC中,

(1)過(guò)點(diǎn)AAB的垂線與∠B的平分線相交于點(diǎn)D

(要求:尺規(guī)作圖,保留作圖痕跡,不寫(xiě)作法);

(2)若∠A=30°,AB=2,則△ABD的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,把一個(gè)轉(zhuǎn)盤(pán)分成四等份,依次標(biāo)上數(shù)字1、2、3、4,若連續(xù)自由轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)二次,指針指向的數(shù)字分別記作作為點(diǎn)的橫、縱坐標(biāo).

1】求點(diǎn)Aab)的個(gè)數(shù);

2】求點(diǎn)Aa,b)在函數(shù)的圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),點(diǎn)在直線上,點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)軸交直線點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為.

1的值為 ;

2)用含有的式子表示線段的長(zhǎng);

3)若的面積為,求之間的函數(shù)表達(dá)式,并求出當(dāng)最大時(shí)點(diǎn)的坐標(biāo);

4)在(3)的條件下,把直線沿著軸向下平移,交軸于點(diǎn),交線段于點(diǎn),若點(diǎn)的坐標(biāo)為,在平移的過(guò)程中,當(dāng)時(shí),請(qǐng)直接寫(xiě)出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD中,E為對(duì)角線AC上一點(diǎn),CE=CD,連接EB、ED,延長(zhǎng)BEAD于點(diǎn)F.求證:DF2=EFBF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,將△DEF與△ABC重合在一起,△ABC不動(dòng),△DEF運(yùn)動(dòng),并滿足:點(diǎn)E在邊BC上沿BC的方向運(yùn)動(dòng),且DE始終經(jīng)過(guò)點(diǎn)A,EFAC交于M點(diǎn).

(1)求證:△ABE∽△ECM;

(2)探究:在△DEF運(yùn)動(dòng)過(guò)程中,重疊部分能否構(gòu)成等腰三角形?若能,求出BE的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;

(3)當(dāng)線段AM最短時(shí),求重疊部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某超市計(jì)劃購(gòu)進(jìn)甲、乙兩種商品,兩種商品的進(jìn)價(jià)、售價(jià)如下表:

商品

進(jìn)價(jià)(元/件)

售價(jià)(元/件)

200

100

若用360元購(gòu)進(jìn)甲種商品的件數(shù)與用180元購(gòu)進(jìn)乙種商品的件數(shù)相同.

1)求甲、乙兩種商品的進(jìn)價(jià)是多少元?

2)若超市銷(xiāo)售甲、乙兩種商品共50件,其中銷(xiāo)售甲種商品為件(),設(shè)銷(xiāo)售完50件甲、乙兩種商品的總利潤(rùn)為元,求之間的函數(shù)關(guān)系式,并求出的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:如果一個(gè)三角形的一個(gè)內(nèi)角等于另一個(gè)內(nèi)角的兩倍,則稱(chēng)這樣的三角形為“倍角三角形”.

1)如圖1,△ABC中,AB=AC,∠A36°,求證:△ABC 是銳角三角形;

2)若△ABC是倍角三角形,,∠B=30°,AC=,求△ABC面積;

3)如圖2,△ABC的外角平分線ADCB的延長(zhǎng)線相交于點(diǎn)D,延長(zhǎng)CA到點(diǎn)E,使得AE=AB,若AB+AC=BD,請(qǐng)你找出圖中的倍角三角形,并進(jìn)行證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案