【題目】如圖l,BD是矩形ABCD的對角線,∠ABD=30,AD=1.將△BCD沿射線BD方向平移到△B'C'D'的位置,使B'為BD中點,連接AB’,C'D,AD’,BC’,如圖2.
(1)求證:四邊形AB'C'D是菱形:
(2)四邊形ABC'D'的周長為____:
(3)將四邊形ABC'D’沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形,直接寫出可能拼成的矩形的周長.
【答案】(1)證明見解析;(2)4;(2)3+2或6+
【解析】試題分析:(1)有一組鄰邊相等的平行四邊形是菱形,據(jù)此進行證明即可;
(2)先判定四邊形ABC'D'是菱形,再根據(jù)邊長AB=AD=,即可得到四邊形ABC'D′的周長為4;
(3)根據(jù)兩種不同的拼法,分別求得可能拼成的矩形周長
試題解析:(1)∵BD是矩形ABCD的對角線,∠ABD=30°,
∴∠ADB=60°,
由平移可得,B'C'=BC=AD,∠D'B'C'=∠DBC=∠ADB=60°,
∴AD∥B'C'
∴四邊形AB'C'D是平行四邊形,
∵B'為BD中點,
∴Rt△ABD中,AB'=BD=DB',
又∵∠ADB=60°,
∴△ADB'是等邊三角形,
∴AD=AB',
∴四邊形AB'C'D是菱形;
(2)由平移可得,AB=C'D',∠ABD'=∠C'D'B=30°,
∴AB∥C'D',
∴四邊形ABC'D'是平行四邊形,
由(1)可得,AC'⊥B'D,
∴四邊形ABC'D'是菱形,
∵AB=AD=,
∴四邊形ABC'D′的周長為4,
(3)將四邊形ABC'D'沿它的兩條對角線剪開,用得到的四個三角形拼成與其面積相等的矩形如下:
∴矩形周長為6+或2+3.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,M是AB的中點,動點P從點A出發(fā),沿AC方向勻速運動到終點C,動點Q從點C出發(fā),沿CB方向勻速運動到終點B.已知P,Q兩點同時出發(fā),并同時到達終點,連接MP,MQ,PQ.在整個運動過程中,△MPQ的面積大小變化情況是( )
A.一直增大
B.一直減小
C.先減小后增大
D.先增大后減少
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有下列四個條件:①AB=BC,②∠ABC=90,③AC=BD,④AC⊥BD.從中選取兩個作為補充條件,使□BCD為正方形(如圖).現(xiàn)有下列四種選法,其中錯誤的是 ( )
A. ②③ B. ②④ C. ①② D. ①③
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】先化簡再求值:
(1)3(x2-2x-1)-4(3x-2)+2(x-1),其中x=﹣3;
(2)2a2﹣[(ab﹣4a2)+8ab]﹣ab,其中a=1,b=.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小紅爸爸上星期五買進某公司股票1000股,每股28元,星期六和星期天不交易.下表為本周內(nèi)每日該股票的漲跌情況.(單位:元)
(1)通過上表你認為星期五收盤時,每股是多少元?
(2)本周內(nèi)每股最高是多少?最低是多少元?
(3)已知股票買入時需交成交額1.5‰的交易費,賣出時需交成交額2.5‰的交易費.若星期五拋出,則小紅爸爸這筆股票交易盈虧如何?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知直線AB上一點O,OC⊥AB,OD⊥OE, 若∠COE=∠BOD.
(1)求∠COE, ∠BOD, ∠AOE的度數(shù).
(2)若OF平分∠BOE,求∠AOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=10,BC=8,P為AD的中點,將△ABP沿BP翻折至△EBP(點A落到點E處),連接DE,則圖中與∠APB相等的角的個數(shù)為( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,設正方體ABCD-A1B1C1D1的棱長為1,黑、白兩個甲殼蟲同時從點A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲爬行的路線是AA1→A1D1→…,白甲殼蟲爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須是既不平行也不相交(其中n是正整數(shù)),那么當黑、白兩個甲殼蟲各爬行完第2013條棱分別停止在所到的正方體頂點處時,它們之間的距離是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義一種新運算⊙:1⊙3=1×4+3=7; 3⊙(-1)=3×4-1=11;(-5)⊙4=(-5)×4+4=-16; (-4)⊙(-3)=(-4)×4-3=-19.
(1)由以上式子可知:a⊙b= ;
(2)若a⊙(-2b)=4,請計算(a-b)⊙(2a+b)的值;
(3)若[x⊙(-2)] ⊙ [(-x)⊙2]=6,求x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com