【題目】如圖,在南北方向的海岸線(xiàn)MN上,有A、B兩艘巡邏船,現(xiàn)均收到故障船C的求救信號(hào).已知A、B兩船相距100( +1)海里,船C在船A的北偏東60°方向上,船C在船B的東南方向上,MN上有一觀(guān)測(cè)點(diǎn)D,測(cè)得船C正好在觀(guān)測(cè)點(diǎn)D的南偏東75°方向上.
(1)分別求出A與C,A與D間的距離AC和AD(如果運(yùn)算結(jié)果有根號(hào),請(qǐng)保留根號(hào)).
(2)已知距離觀(guān)測(cè)點(diǎn)D處100海里范圍內(nèi)有暗礁,若巡邏船A沿直線(xiàn)AC去營(yíng)救船C,在去營(yíng)救的途中有無(wú)觸礁的危險(xiǎn)?(參考數(shù)據(jù): ≈1.41, ≈1.73)
【答案】
(1)
解:如圖,作CE⊥AB于E,
由題意得:∠ABC=45°,∠BAC=60°,
設(shè)AE=x海里,
在Rt△AEC中,CE=AEtan60°= x;
在Rt△BCE中,BE=CE= x.
∴AE+BE=x+ x=100( +1),
解得:x=100.
AC=2x=200.
在△ACD中,∠DAC=60°,∠ADC=75°,則∠ACD=45°.
過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F,
設(shè)AF=y,則DF=CF= y,
∴AC=y+ y=200,
解得:y=100( ﹣1),
∴AD=2y=200( ﹣1).
答:A與C之間的距離AC為200海里,A與D之間的距離AD為200( ﹣1)海里.
(2)
解:由(1)可知,DF= AF= ×100( ﹣1)≈126.3海里,
因?yàn)?26.3>100,所以巡邏船A沿直線(xiàn)AC航線(xiàn),在去營(yíng)救的途中沒(méi)有觸暗礁危險(xiǎn).
【解析】(1)作CE⊥AB于E,設(shè)AE=x海里,則BE=CE= x海里.根據(jù)AB=AE+BE=x+ x=100( +1),求得x的值后即可求得AC的長(zhǎng);過(guò)點(diǎn)D作DF⊥AC于點(diǎn)F,同理求出AD的長(zhǎng);(2)根據(jù)(1)中的結(jié)論得出DF的長(zhǎng),再與100比較即可得到答案.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=15,BC=14,AC=13,求△ABC的面積.
某學(xué)習(xí)小組經(jīng)過(guò)合作交流,給出了下面的解題思路,請(qǐng)你按照他們的解題思路完成解答過(guò)程.
思路:(1) 作AD⊥BC于D,設(shè)BD = x,用含x的代數(shù)式表示CD;(2)根據(jù)勾股定理,利用AD作為“橋梁”,建立方程模型,求出x;(3)利用勾股定理求出AD的長(zhǎng),再計(jì)算三角形面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四邊形ABCD中,BE⊥AC,DF⊥AC,垂足分別為E,F(xiàn),BE=DF,AE=CF.
(1)求證:△AFD≌△CEB;
(2)若∠CBE=∠BAC,四邊形ABCD是怎樣的四邊形?證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在□ABCD中,以點(diǎn)A為圓心,AB長(zhǎng)為半徑畫(huà)弧交AD于點(diǎn)F,再分別以點(diǎn)B、F為圓心,以大于BF的相同長(zhǎng)為半徑畫(huà)弧,兩弧交于點(diǎn)P;連接AP并延長(zhǎng)交BC于點(diǎn)E,連接EF,得四邊形ABEF.
求證:四邊形ABEF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知∠AOB=120°,OC⊥OB,按下列要求利用量角器過(guò)點(diǎn)O作出射線(xiàn)OD、OE;
(1)在圖①中作出射線(xiàn)OD滿(mǎn)足∠COD=50°,并直接寫(xiě)出∠AOD的度數(shù)是 ;
(2)在圖②中作出射線(xiàn)OD、OE,使得OD平分∠AOC,OE平分∠BOD,并求∠COE的度數(shù);
(3)如圖③,若射線(xiàn)OD從OA出發(fā)以每秒10°的速度繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),同時(shí)射線(xiàn)OE從OC出發(fā)以每秒5°的速度繞點(diǎn)O順時(shí)針?lè)较蛐D(zhuǎn),設(shè)旋轉(zhuǎn)的時(shí)間為t秒,在旋轉(zhuǎn)過(guò)程中,當(dāng)OB第一次恰好平分∠DOE時(shí),求出t的值,并作出此時(shí)OD、OE的大概位置.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無(wú)關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1的正方形ABCD中,動(dòng)點(diǎn)F,E分別以相同的速度從D,C兩點(diǎn)同時(shí)出發(fā)向C和B運(yùn)動(dòng)(任何一個(gè)點(diǎn)到達(dá)即停止),過(guò)點(diǎn)P作PM∥CD交BC于M點(diǎn),PN∥BC交CD于N點(diǎn),連接MN,在運(yùn)動(dòng)過(guò)程中,則下列結(jié)論:
①△ABE≌△BCF;②A(yíng)E=BF;③AE⊥BF;④CF2=PEBF;⑤線(xiàn)段MN的最小值為 .
其中正確的結(jié)論有( )
A.2個(gè)
B.3個(gè)
C.4個(gè)
D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,過(guò)正五邊形ABCDE的頂點(diǎn)D作直線(xiàn)l∥AB,則∠1的度數(shù)是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com