精英家教網 > 初中數學 > 題目詳情

【題目】某學校為了解今年八年級學生足球運球的掌握情況,隨機抽取部分八年級學生足球運球的測試成績作為一個樣本,按A、B、C、D四個等級進行如圖不完整的統計圖根據所給信息,解答以下問題:

1)在扇形統計圖中,C對應的扇形的圓心角是   度;

2)補全條形統計圖、扇形統計圖;

3)該校八年級有300名學生,請估計足球運球測試成績達到A級的學生有多少人?

【答案】(1)117;(2)詳見解析;(3)30人.

【解析】

1)先由B等級人數及其所占百分比求出總人數,由各等級人數之和等于總人數得出C等級人數,從而可用360°乘以C等級人數占總人數的比例即可得;

2)由各等級人數之和等于總人數得出C等級人數,根據百分比概念求出A、C等級對應的百分比,由百分比之和等于1求出D等級對應的百分比,從而補全圖形;

3)用總人數乘以樣本中A等級對應的百分比即可得.

解:(118÷45%40,

即在這次調查中一共抽取了40名學生,

在扇形統計圖中,C對應的扇形的圓心角是:360°×117°

故答案為:117;

2C等級的人數為:40418513,

A等級對應的百分比為×100%10%C等級對應的百分比為×100%32.5%,

D等級對應的百分比為1﹣(10%+45%+32.5%)=12.5%,

補全圖形如下:

3)估計足球運球測試成績達到A級的學生有300×10%30(人).

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中直線 x軸于A,y軸于B,C是線段AB的中點,連接OC,然后將直線OC繞點C逆時針旋轉30°x軸于點D,再過D點作直線DC1OCAB與點C1,然后過C1點繼續(xù)作直線D1C1DC,x軸于點D1,并不斷重復以上步驟,OCD的面積為S1,DC1D1的面積為S2依此類推,后面的三角形面積分別是S3S4,那么S1=_____S=S1+S2+S3+…+Sn,n無限大時S的值無限接近于_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖所示,在直角梯形ABCD中,∠BAD=90°,E是直線AB上一點,過E作直線l∥BC,交直線CD于點F.將直線l向右平移,設平移距離BEt(t≥0),直角梯形ABCD被直線l掃過的面積(圖中陰影部分)為S,S關于t的函數圖象如圖所示,OM為線段,MN為拋物線的一部分,NQ為射線,N點橫坐標為4.

信息讀取

(1)梯形上底的長AB=   ;

(2)直角梯形ABCD的面積=   ;

圖象理解

(3)寫出圖中射線NQ表示的實際意義;

(4)當2<t<4時,求S關于t的函數關系式;

問題解決

(5)當t為何值時,直線l將直角梯形ABCD分成的兩部分面積之比為1:3.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】2016年泉州市初中體育中考中,隨意抽取某校5位同學一分鐘跳繩的次數分別為158,160154,158,170,則由這組數據得到的結論錯誤的是(  )

A. 平均數為160 B. 中位數為158 C. 眾數為158 D. 方差為20.3

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】閱讀理解:

(閱讀材料)

在數軸上,通常用“兩數的差”來表示“數軸上兩點的距離”如圖1中三條線段的

長度可表示為:,結論:數軸上任意兩點

表示的數為分別,則這兩個點間的距離為(即:用較大的數去減較小的數)

(理解運用)

根據閱讀材料完成下列各題:

1)如圖2, 分別表示數,求線段的長;

2)若在直線上存在點,使得,求點對應的數值.

3兩點分別從同時出發(fā)以3個單位、2個單位長度的速度沿數軸向右運動,求當點重合時,它們運動的時間;

4)在(3)的條件下,求當時,它們運動的時間.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,DE分別是AB、AC的中點,連接CD,過EEFDCBC的延長線于F

1)證明:四邊形CDEF是平行四邊形;

2)若四邊形CDEF的周長是16cm,AC的長為8cm,求線段AB的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知直線y=kx(k>0)與雙曲線交于A、B兩點,且點A的縱坐標為4,第一象限的雙曲線上有一點,過點PPQ//y軸交直線AB于點Q

1)直接寫出k的值及點B的坐標:

2)求線段PQ的長;

3)如果在直線y=kx上有一點M,且滿足BPM的面積等于12,求點M的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,一次函數y=2x+b的圖象與反比例函數(x>0)的圖象交于點A(m,2),與坐標軸分別交于B和C(0,-2)兩點.

(1)求反比例函數的表達式;

(2)若P是y軸上一動點,當PA+PB的值最小時,求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若非零數a,b互為相反數,c,d互為倒數,;

1)求的值;(2)求的值.

查看答案和解析>>

同步練習冊答案