【題目】為了鼓勵(lì)市民節(jié)約用水,萬(wàn)州市居民生活用水按階梯式水價(jià)計(jì)費(fèi),表是該市居民“一戶一表”生活用水階梯式計(jì)費(fèi)價(jià)格表的一部分信息:(水價(jià)計(jì)費(fèi)自來(lái)水銷售費(fèi)用污水處理費(fèi)用)
自來(lái)水銷售價(jià)格 | 污水處理價(jià)格 | |
每戶每月用水量 | 單價(jià):元噸 | 單價(jià):元噸 |
17噸及以下 | 0.80 | |
超過(guò)17噸不超過(guò)30噸的部分 | 0.80 | |
超過(guò)30噸的部分 | 6.00 | 0.80 |
說(shuō)明:①每戶產(chǎn)生的污水量等于該戶的用水量,②水費(fèi)=自來(lái)水費(fèi)+污水處理費(fèi);
已知小明家2013年3月份用水20噸,交水費(fèi)66元;5月份用水25噸,交水費(fèi)91元.
(1)求,的值.
(2)隨著夏天的到來(lái),用水量將增加。為了節(jié)省開(kāi)支,小夢(mèng)計(jì)劃把6月份的水費(fèi)控制在不超過(guò)家庭月收入的2%,若小夢(mèng)加的月收入為9200元,則小王家6月份最多能用水多少噸?
【答案】(1)a=2.2,b=4.2;(2)張老師家六月份最多用水40噸.
【解析】
(1)根據(jù)表格收費(fèi)標(biāo)準(zhǔn),及張老師4、5兩月用水量、水費(fèi),可得出方程組,解出即可;
(2)先判斷用水量超過(guò)30噸,繼而再由水費(fèi)不超過(guò)184,可得出不等式,解出即可.
(1)由題意,得,
解得:.
(2)當(dāng)用水量為30噸時(shí),水費(fèi)為:17×2.2+13×4.2+0.8×30=116元,9200×2%=184元,
∵116<184,
∴張老師家六月份的用水量超過(guò)30噸,
設(shè)張老師家6月份用水量為x噸,
由題意得:17×2.2+13×4.2+6(x-30)+0.8x≤184,
解得:x≤40,
∴張老師家六月份最多用水40噸.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)A和點(diǎn)C分別在直線MN和直線EF上,點(diǎn)B在直線外,∠BAN=α,∠BCF=β.
(1)如圖1,若MN∥EF,則∠B= (用α,β的式子表示,不寫(xiě)證明過(guò)程)
(2)在(1)的條件下,點(diǎn)T在直線MN與直線EF之間,∠MAT=∠BAN,∠TCB=2∠TCE,求∠B與∠T之間的數(shù)量關(guān)系.
(3)如圖2,若MN不平行于EF,直線AC平分∠MAB,且平分∠ECB,則∠B= (用α,β的式子表示,不寫(xiě)證明過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD是正方形ABCD的對(duì)角線,BC=2,邊BC在其所在的直線上平移,將通過(guò)平移得到的線段記為PQ,連接PA、QD,并過(guò)點(diǎn)Q作QO⊥BD,垂足為O,連接OA、OP.
(1)請(qǐng)直接寫(xiě)出線段BC在平移過(guò)程中,四邊形APQD是什么四邊形?
(2)請(qǐng)判斷OA、OP之間的數(shù)量關(guān)系和位置關(guān)系,并加以證明;
(3)在平移變換過(guò)程中,設(shè)y=S△OPB , BP=x(0≤x≤2),求y與x之間的函數(shù)關(guān)系式,并求出y的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+4的圖象與反比例函數(shù)y= (k為常數(shù),且k≠0)的圖象交于A(1,a),B兩點(diǎn).
(1)求反比例函數(shù)的表達(dá)式及點(diǎn)B的坐標(biāo);
(2)在x軸上找一點(diǎn)P,使PA+PB的值最小,求滿足條件的點(diǎn)P的坐標(biāo)及△PAB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC三個(gè)頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1) 請(qǐng)畫(huà)出△ABC向左平移5個(gè)單位長(zhǎng)度后得到的△ABC;
(2) 請(qǐng)畫(huà)出△ABC關(guān)于原點(diǎn)對(duì)稱的△ABC;
(3) 在軸上求作一點(diǎn)P,使△PAB的周長(zhǎng)最小,請(qǐng)畫(huà)出△PAB,并直接寫(xiě)出P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】探索規(guī)律,觀察下面由※組成的圖案和算式,并解答問(wèn)題.
1+3=4=22
1+3+5=9=32
1+3+5+7=16=42
1+3+5+7+9=25=52
(1)試寫(xiě)出1+3+5+7+9+…+19= ;
(2)試寫(xiě)出1+3+5+7+9+…+(2n﹣1)= ;
(3)請(qǐng)用上述規(guī)律計(jì)算:
①101+103+105+107+…+2017+2019;
②(2m+1)+(2m+3)+(2m+5)+…+(2n+7)(其中n>m)(列出代數(shù)式即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,將△ABC紙片沿DE折疊,使點(diǎn)A落在點(diǎn)A'處,且A'B平分∠ABC,A'C平分∠ACB,若∠BA'C=110°,則∠1+∠2的度數(shù)為( 。
A. 80°; B. 90°; C. 100°; D. 110°;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一拋物線型拱橋,當(dāng)拱頂?shù)剿娴木嚯x為2米時(shí),水面寬度為4米;那么當(dāng)水位下降1米后,水面的寬度為米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a、b、c為常數(shù),a≠0)經(jīng)過(guò)點(diǎn)A(﹣1,0),B(5,﹣5),C(6,0)
(1)求拋物線的解析式;
(2)如圖,在直線AB下方的拋物線上是否存在點(diǎn)P使四邊形PACB的面積最大?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)若點(diǎn)Q為拋物線的對(duì)稱軸上的一個(gè)動(dòng)點(diǎn),試指出使△QAB為等腰三角形的點(diǎn)Q一共有幾個(gè)?并請(qǐng)你求出其中一個(gè)點(diǎn)Q的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com