【題目】如圖,若B、D、F在AN上,C、E在AM上,且AB=BC=CD=ED=EF,∠A=20°,則∠FEB= __________
【答案】70°
【解析】
先根據(jù)AB=BC=CD得到∠BCA=∠A,∠CDB=∠CBD,再通過三角形的外角性質得到△ECD是等邊三角形,從而得到BC=CE,求出∠CEB的度數(shù);由ED=EF得到∠EDF=∠EFD,再通過三角形的內角和公式和外角性質得到∠FEA的度數(shù),∠FEA-∠CEB的值即為∠FEB的度數(shù).
解:∵AB=BC,
∴ ∠BCA=∠A=20°,
∴∠CBD=∠BCA+∠A=20°+20°=40°.
又∵ BC=CD,
∴∠CDB=∠CBD=40°,
∴∠ECD=180°-∠BCA -∠BCD
=180°-20°-(180°-∠CBD-∠CDB)
=160°-(180°-40°-40°)
=60°
又∵CD=ED,∠ECD=60°,
∴△ECD是等邊三角形,
∴BC=CE,∠CDE=60°,
∴∠CEB=∠BCA =×20°=10°,∠ADE=∠CDE+∠CDB=60°+40°=100°.
又∵ ED=EF,
∴∠EDF=∠EFD=180°-∠CEB=180°-100°=80°,
∴∠FEA=180°-∠A-∠EFD=180°-20°-80°=80°,
∴∠FEB=∠FEA-∠CEB=80°-10°=70°.
故答案為:70°.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,∠AOB=90°,∠OAB=30°,反比例函數(shù)y1=的圖象經過點A,反比例函數(shù)y2=的圖象經過點B,則下列關于m,n的關系正確的是( )
A.m=nB.m=﹣nC.m=﹣nD.m=﹣3n
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)求證:△ADE≌△ABF;
(2)填空:△ABF可以由△ADE繞旋轉中心 點,按順時針方向旋轉 度得到;
(3)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,∠DAC的平分線交DC于點E,若點P,Q分別是AD和AE上的動點,則DQ+PQ的最小值是________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線為常數(shù))交軸于兩點.
(1)求拋物線的解析式;
(2)直接寫出:①拋物線的頂點坐標;
②拋物線與軸交點關于該拋物線對稱軸對稱的點的坐標;
(3)在直線下方的拋物線上是否存在點使的面積最大?若存在,請求出點的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】△ABC中,∠BAC=60°,點D在AB上,點E,F在BC上,∠ADE=60°,∠BAF=2∠BED.
(1)如圖1,求證:AF=AC;
(2)如圖2,當E為BC的中點時,求證:AD-BD=AF;
(3)如圖3,在(2)的條件下,在AB上取點G,使∠ACG=∠BED,連接CG交AF于點M,若BD=3,FM=8,求AD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點D是AB上的一點,連接CD,CE∥AB,BE∥CD,且CE=AD.
(1)求證:四邊形BDCE是菱形;
(2)過點E作EF⊥BD,垂足為點F,若點F是BD的中點,EB=6,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+5與x軸交于A(﹣1,0),B(5,0)兩點(點A在點B的左側),與y軸交于點C.
(1)求拋物線的解析式;
(2)點D是第一象限內拋物線上的一個動點(與點C,B不重合),過點D作DF⊥x軸于點F,交直線BC于點E,連接BD,直線BC能否把△BDF分成面積之比為2:3的兩部分?若能,請求出點D的坐標;若不能,請說明理由.
(3)若M為拋物線對稱軸上一動點,使得△MBC為直角三角形,請直接寫出點M的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場將每件進價為80元的A商品按每件100元出售,一天可售出128件.經過市場調查,發(fā)現(xiàn)這種商品的銷售單價每降低1元,其日銷量可增加8件.設該商品每件降價x元,商場一天可通過A商品獲利潤y元.
(1)求y與x之間的函數(shù)解析式(不必寫出自變量x的取值范圍)
(2)A商品銷售單價為多少時,該商場每天通過A商品所獲的利潤最大?
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com