【題目】如圖,已知直線y=kx+b交x軸于點(diǎn)A,交y軸于點(diǎn)B,直線y=2x﹣4交x軸于點(diǎn)D,與直線AB相交于點(diǎn)C(3,2).
(1)根據(jù)圖象,寫出關(guān)于x的不等式2x﹣4>x+b的解集;
(2)若點(diǎn)A的坐標(biāo)為(5,0),求直線AB的解析式;
(3)在(2)的條件下,求四邊形BODC的面積.
【答案】(1)x>3(2)y=-x+5(3)9
【解析】
(1)根據(jù)C點(diǎn)坐標(biāo)結(jié)合圖象可直接得到答案;
(2)利用待定系數(shù)法把點(diǎn)A(5,0),C(3,2)代入y=kx+b可得關(guān)于k、b得方程組,再解方程組即可;
(3)由直線解析式求得點(diǎn)A、點(diǎn)B和點(diǎn)D的坐標(biāo),進(jìn)而根據(jù)S四邊形BODC=S△AOB-S△ACD進(jìn)行求解即可得.
(1)根據(jù)圖象可得不等式2x-4>x+b的解集為:x>3;
(2)把點(diǎn)A(5,0),C(3,2)代入y=kx+b可得:
,解得:,
所以解析式為:y=-x+5;
(3)把x=0代入y=-x+5得:y=5,
所以點(diǎn)B(0,5),
把y=0代入y=-x+5得:x=2,
所以點(diǎn)A(5,0),
把y=0代入y=2x-4得:x=2,
所以點(diǎn)D(2,0),
所以DA=3,
所以S四邊形BODC=S△AOB-S△ACD==9.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某農(nóng)戶共摘收水蜜桃1920千克,為尋求合適的銷售價(jià)格,進(jìn)行了6天試銷,試銷情況如下:
第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | |
售價(jià) x(元/千克) | 20 | 18 | 15 | 12 | 10 | 9 |
銷售量 y(千克) | 45 | 50 | 60 | 75 | 90 | 100 |
由表中數(shù)據(jù)可知,試銷期間這批水蜜桃的每天銷售量y(千克)與售價(jià)x(元/千克)之間滿足我們?cè)?jīng)學(xué)過(guò)的某種函數(shù)關(guān)系.若在這批水蜜桃的后續(xù)銷售中,每天的銷售量y(千克)與售價(jià)x(元/千克)之間都滿足這一函數(shù)關(guān)系.
(1)你認(rèn)為y與x之間滿足什么函數(shù)關(guān)系?并求y關(guān)于x的函數(shù)表達(dá)式.
(2)在試銷6天后,該農(nóng)戶決定將這批水密桃的售價(jià)定為15元/千克.
① 若每天都按15元/千克的售價(jià)銷售,則余下的水蜜桃預(yù)計(jì)還要多少天可以全部售完?
② 該農(nóng)戶按15元/千克的售價(jià)銷售20天后,發(fā)現(xiàn)剩下的水蜜桃過(guò)于成熟,必須在不超過(guò)2天內(nèi)全部售完,因此需要重新確定一個(gè)售價(jià),使后面2天都按新的售價(jià)銷售且能如期全部售完,則新的售價(jià)最高可以定為多少元/千克?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上A、B兩點(diǎn)表示的數(shù)分別為a、b,且a、b滿足|a+2|+(b-8)2=0,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度向左勻速運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒(t>0)
(1) ① 線段AB的中點(diǎn)表示的數(shù)為___________
② 用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為___________
(2) 求當(dāng)t為何值時(shí),PQ=AB
(3) 若點(diǎn)M為PA的中點(diǎn),點(diǎn)N為PB的中點(diǎn),點(diǎn)P在運(yùn)動(dòng)過(guò)程中,線段MN的長(zhǎng)度是否發(fā)生變化?若變化,請(qǐng)說(shuō)明理由;若不變,請(qǐng)求出線段MN的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線y=x2+bx+c經(jīng)過(guò)點(diǎn)(2,-3)和(4,5)。
(1)求拋物線的表達(dá)式及頂點(diǎn)坐標(biāo);
(2)將拋物線沿x軸翻折,得到圖象G,求圖象G的表達(dá)式;
(3)在(2)的條件下,當(dāng)-2<x<2時(shí),直線y=m與該圖象有一個(gè)公共點(diǎn),求m的值或取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小明在數(shù)學(xué)活動(dòng)課上,將邊長(zhǎng)為和3的兩個(gè)正方形放置在直線l上,如圖a,他連接AD、CF,經(jīng)測(cè)量發(fā)現(xiàn)AD=CF.
(1)他將正方形ODEF繞O點(diǎn)逆時(shí)針針旋轉(zhuǎn)一定的角度,如圖b,試判斷AD與CF還相等嗎?說(shuō)明理由.
(2)他將正方形ODEF繞O點(diǎn)逆時(shí)針旋轉(zhuǎn),使點(diǎn)E旋轉(zhuǎn)至直線l上,如圖c,請(qǐng)求出CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①,在△ABC中,∠BAC=90°,AB=AC,點(diǎn)E在AC上(且不與點(diǎn)A,C重合),在△ABC的外部作△CED,使∠CED=90°,DE=CE,連接AD,分別以AB,AD為鄰邊作平行四邊形ABFD,連接AF.
(1)請(qǐng)直接寫出線段AF,AE的數(shù)量關(guān)系 ;
(2)將△CED繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)E在線段BC上時(shí),如圖②,連接AE,請(qǐng)判斷線段AF,AE的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)在圖②的基礎(chǔ)上,將△CED繞點(diǎn)C繼續(xù)逆時(shí)針旋轉(zhuǎn),請(qǐng)判斷(2)問(wèn)中的結(jié)論是否發(fā)生變化?若不變,結(jié)合圖③寫出證明過(guò)程;若變化,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市對(duì)市民開(kāi)展了有關(guān)霧霾的調(diào)查問(wèn)卷,調(diào)查內(nèi)容是“你認(rèn)為哪種措施治理霧霾最有效”,有以下四個(gè)選項(xiàng):A:綠化造林. B:汽車限行.C:拆除燃煤小鍋爐.D:使用清潔能源.調(diào)查過(guò)程中隨機(jī)抽取了部分市民進(jìn)行調(diào)查,并將調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)回答下列問(wèn)題:
(1)這次被調(diào)查的市民共有多少人?
(2)請(qǐng)你將統(tǒng)計(jì)圖1補(bǔ)充完整;
(3)求圖2中D項(xiàng)目對(duì)應(yīng)的扇形的圓心角的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著通訊技術(shù)的迅猛發(fā)展,人與人之間的溝通方式更多樣、便捷.某校數(shù)學(xué)興趣小組設(shè)計(jì)了“你最喜歡的溝通方式”調(diào)查問(wèn)卷(每人必選且只選一種),在全校范圍內(nèi)隨機(jī)調(diào)查了部分學(xué)生,將統(tǒng)計(jì)結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合圖中所給的信息解答下列問(wèn)題:
(1)這次統(tǒng)計(jì)共抽查了多少名學(xué)生;在扇形統(tǒng)計(jì)圖中,表示“QQ”的扇形圓心角的度數(shù)是多少?
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校共有900名學(xué)生,請(qǐng)估計(jì)該校最喜歡用“微信”進(jìn)行溝通的學(xué)生有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,AB=6,過(guò)點(diǎn)C的直線MN∥AB,D為AB上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線MN于點(diǎn)E,垂足為F,連接CD,BE.
(1)當(dāng)點(diǎn)D是AB的中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(2)在(1)的條件下,當(dāng)∠A等于多少度時(shí),四邊形BECD是正方形?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com