【題目】如圖,在RtABC中,∠ACB=90°,CD是斜邊AB上的中線(xiàn),那么下列結(jié)論錯(cuò)誤的是(

A.A+DCB=90°B.ADC= 2BC. AB=2CDD. BC=CD

【答案】D

【解析】

根據(jù)直角三角形斜邊上的中線(xiàn)性質(zhì)得出CD=AD=BD,根據(jù)等邊對(duì)等角得出∠DCB=B,再逐個(gè)判斷即可.

A、∵在RtABC中,∠ACB=90°,CD是斜邊AB上的中線(xiàn),
CD=AD=BD=AB,
∴∠DCB=B
∵∠ACB=90°,
∴∠A+B=90°,
∴∠A+DCB=90°,故本選項(xiàng)正確,不合題意;
B、∵∠DCB=B,∠ADC=B+DCB,
∴∠ADC=2B,故本選項(xiàng)正確,不合題意;
C、∵在RtABC中,∠ACB=90°CD是斜邊AB上的中線(xiàn),
AB=2CD,故本選項(xiàng)正確,不合題意;
D、根據(jù)已知不能推出BC=CD,故本選項(xiàng)錯(cuò)誤,符合題意;
故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABO的直徑,F為弦AC的中點(diǎn),連接OF并延長(zhǎng)交弧AC于點(diǎn)D,過(guò)點(diǎn)DO的切線(xiàn),交BA的延長(zhǎng)線(xiàn)于點(diǎn)E

(1)求證:ACDE;

(2)連接AD、CD、OC.填空

當(dāng)∠OAC的度數(shù)為   時(shí),四邊形AOCD為菱形;

當(dāng)OAAE2時(shí),四邊形ACDE的面積為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形 ABCD 中,ADBC,ABBC,對(duì)角線(xiàn) AC、BD 交于點(diǎn) O,BD 平分∠ABC,過(guò)點(diǎn) D DEBC BC 的延長(zhǎng)線(xiàn)于點(diǎn) E.連接 OE

1)求證:四邊形 ABCD 是菱形;

2)若 tanDBC= ,AB= ,求線(xiàn)段 OE 的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,頂點(diǎn)為A的拋物線(xiàn)與x軸交于BC兩點(diǎn),與y軸交于點(diǎn)D,已知A(1,4)B(3,0)

(1)求拋物線(xiàn)對(duì)應(yīng)的二次函數(shù)表達(dá)式;

(2)探究:如圖1,連接OA,作DE∥OABA的延長(zhǎng)線(xiàn)于點(diǎn)E,連接OEAD于點(diǎn)F,MBE的中點(diǎn),則OM是否將四邊形OBAD分成面積相等的兩部分?請(qǐng)說(shuō)明理由;

(3)應(yīng)用:如圖2,P(mn)是拋物線(xiàn)在第四象限的圖象上的點(diǎn),且m+n=﹣1,連接PAPC,在線(xiàn)段PC上確定一點(diǎn)M,使AN平分四邊形ADCP的面積,求點(diǎn)N的坐標(biāo).提示:若點(diǎn)A、B的坐標(biāo)分別為(x1,y1)、(x2,y2),則線(xiàn)段AB的中點(diǎn)坐標(biāo)為()

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知拋物線(xiàn)x軸交于不同的兩點(diǎn),與y軸交于點(diǎn)C,且是方程的兩個(gè)根().

1求拋物線(xiàn)的解析式;

2過(guò)點(diǎn)AADCB交拋物線(xiàn)于點(diǎn)D,求四邊形ACBD的面積;

3如果P是線(xiàn)段AC上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)AC重合),過(guò)點(diǎn)P作平行于x軸的直線(xiàn)lBC于點(diǎn)Q,那么在x軸上是否存在點(diǎn)R,使得PQR為等腰直角三角形?若存在,求出點(diǎn)R的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(新知探究)新定義:平面內(nèi)兩定點(diǎn) A, B ,所有滿(mǎn)足 k ( k 為定值) P 點(diǎn)形成的圖形是圓,我們把這種圓稱(chēng)之為“阿氏圓”,

(問(wèn)題解決)如圖,在ABC 中,CB 4 , AB 2AC ,則ABC 面積的最大值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD中,AB=BCBC=10,∠BCD=60°,兩頂點(diǎn)B、D分別在平面直角坐標(biāo)系的y軸、x軸的正半軸上滑動(dòng),連接OA,則OA的長(zhǎng)的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】現(xiàn)有一列數(shù)a1,a2a3,a98,a99a100,其中a32020a7=-2018a98=-1,且滿(mǎn)足任意相鄰三個(gè)數(shù)的和為常數(shù),則a1a2a3a98a99a100的值為( )

A.1985B.1985C.2019D.2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn)軸交于,兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸相交于點(diǎn),頂點(diǎn)為,連接,與拋物線(xiàn)的對(duì)稱(chēng)軸交于點(diǎn),點(diǎn)為線(xiàn)段上的一個(gè)動(dòng)點(diǎn)(不與兩點(diǎn)重合),過(guò)點(diǎn)軸的垂線(xiàn)交拋物線(xiàn)于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為

1)當(dāng)為何值時(shí),四邊形為平行四邊形;

2)設(shè)的面積為,求的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案