【題目】如圖所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC.
求證:(1)EC=BF;(2)EC⊥BF.
【答案】(1)證明見解析;(2)證明見解析.
【解析】試題分析:(1)先求出∠EAC=∠BAF,然后利用“邊角邊”證明△ABF和△AEC全等,根據(jù)全等三角形對應(yīng)邊相等即可證明;
(2)根據(jù)全等三角形對應(yīng)角相等可得∠AEC=∠ABF,設(shè)AB、CE相交于點D,根據(jù)∠AEC+∠ADE=90°可得∠ABF+∠ADM=90°,再根據(jù)三角形內(nèi)角和定理推出∠BMD=90°,從而得證.
證明:(1)∵AE⊥AB,AF⊥AC,
∴∠BAE=∠CAF=90°,
∴∠BAE+∠BAC=∠CAF+∠BAC,
即∠EAC=∠BAF,
在△ABF和△AEC中,
∵,
∴△ABF≌△AEC(SAS),
∴EC=BF;
(2)如圖,根據(jù)(1),△ABF≌△AEC,
∴∠AEC=∠ABF,
∵AE⊥AB,
∴∠BAE=90°,
∴∠AEC+∠ADE=90°,
∵∠ADE=∠BDM(對頂角相等),
∴∠ABF+∠BDM=90°,
在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,
所以EC⊥BF.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與軸、軸分別相交于A、B兩點,且與反比例函數(shù)的圖象在第二象限交于點C.如果點A的坐標為(4,0),OA=2OB,點 B是AC的中點.
(1)求點C的坐標;
(2)求一次函數(shù)和反比例函數(shù)的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,AC=6,BD=8,動點P從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止,點P′是點P關(guān)于BD的對稱點,PP′交BD于點M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為4的正方形,在正方形的一個角上剪去長方形CEFG,其中E,G分別是邊CD,BC上的點,且CE=3,CG=2,剩余部分是六邊形ABGFED,請你建立適當?shù)闹苯亲鴺讼登罅呅蜛BGFED各頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方形OABC中,O為平面直角坐標系的原點,點A坐標為(a,0),點C的坐標為(0,b),且a、b滿足+|b-6|=0,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著O-C-B-A-O的線路移動.
(1)a=______________,b=_____________,點B的坐標為_______________;
(2)當點P移動4秒時,請指出點P的位置,并求出點P的坐標;
(3)在移動過程中,當點P到x軸的距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑OD⊥弦AB于點C,連結(jié)AO并延長交⊙O于點E,連結(jié)EC.若AB=8,CD=2,則EC的長為( )
A.2
B.8
C.2
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,AC=6,BD=8,動點P從點B出發(fā),沿著B﹣A﹣D在菱形ABCD的邊上運動,運動到點D停止,點P′是點P關(guān)于BD的對稱點,PP′交BD于點M,若BM=x,△OPP′的面積為y,則y與x之間的函數(shù)圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】填空完成推理過程:
如圖,AD⊥BC于點D,EG⊥BC于點G,AD平分∠BA C. 求證: ∠E=∠1.
證明: ∵AD⊥BC于點D,EG⊥BC于點G,(已知)
∴∠ADC=∠EGC=90°,(垂直的定義)
∴AD∥EG,( )
∴∠1= ,( )
∠E=∠3,(兩直線平行,同位角相等)
∵AD平分∠BAC,(已知)
∴∠2=∠3,( )
∴∠E=∠1.(等量代換)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com