【題目】如圖,二次函數y=ax2+bx+c(a、b、c為常數,且a≠0)的圖象與x軸的交點的橫坐標分別為﹣1、3,則下列結論:①abc<0;②2a+b=0;③3a+2c>0;④對于任意x均有ax2﹣a+bx﹣b≥0,正確個數有( 。
A.1個B.2個C.3個D.4個
【答案】B
【解析】
由拋物線開口方向得到a>0,利用拋物線與x軸的交點問題和拋物線的對稱性得到拋物線的對稱軸為直線x=1,即﹣=1,所以b=﹣2a<0,利用拋物線與y軸的交點位置得到c<0,則可對①進行判斷;利用b=﹣2a可對②進行判斷;由于x=﹣1時,y=0,所以a﹣b+c=0,則c=﹣3a,3a+2c=﹣3a<0,于是可對③進行判斷;根據二次函數性質,x=1時,y的值最小,所以a+b+c≤ax2+bx+c,于是可對④進行判斷.
解:∵拋物線開口向上,
∴a>0,
∵拋物線與x軸的交點的坐標分別為(﹣1,0),(3,0),
∴拋物線的對稱軸為直線x=1,即﹣=1,
∴b=﹣2a<0,
∵拋物線與y軸的交點在x軸下方,
∴c<0,
∴abc>0,所以①錯誤;
∵b=﹣2a,
∴2a+b=0,所以②正確;
∵x=﹣1時,y=0,
∴a﹣b+c=0,即a+2a+c=0,
∴c=﹣3a,
∴3a+2c=3a﹣6a=﹣3a<0,所以③錯誤;
∵x=1時,y的值最小,
∴對于任意x,a+b+c≤ax2+bx+c,
即ax2﹣a+bx﹣b≥0,所以④正確.
故選:B.
科目:初中數學 來源: 題型:
【題目】已知拋物線y=ax2+bx+c的頂點為D(﹣1,3),與x軸的一個交點在(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則以下結論:
①b2+4ac>0;②c﹣a=3;③a+b+c<0;④方程ax2+bx+c=m(m≥2)一定有實數根,其中正確的結論為( )
A.②③ B.①③ C.①②③ D.①②④
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在慈善一日捐活動中,學校團總支為了了解本校學生的捐款情況,隨機抽取了50名學生的捐款數進行了統計,并繪制成下面的統計圖.
(1)這50名同學捐款的眾數為 元,中位數為 元;
(2)該校共有600名學生參與捐款,請估計該校學生的捐款總數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AB=10,AC=8,BC=6,以邊AB中點O為圓心,作半圓與AC相切,點P,Q分別是邊BC和半圓上的動點,連接PQ,則PQ長的最大值與最小值的和是__.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦BC=6cm,AC=8cm.若動點P以2cm/s的速度從B點出發(fā)沿著B→A的方向運動,點Q以1cm/s的速度從A點出發(fā)沿著A→C的方向運動,當點P到達點A時,點Q也隨之停止運動.設運動時間為t(s),當△APQ是直角三角形時,t的值為___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線y=x2+x﹣6與x軸兩個交點分別是A、B(點A在點B的左側).
(1)求A、B的坐標;
(2)利用函數圖象,寫出y<0時,x的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】將一塊含有45°的三角板ABC的頂點A放在⊙O上,且AC與⊙O相切于點A(如圖1),將△ABC從點A開始,繞著點A順時針旋轉,設旋轉角為α(0°<α<135°),旋轉后,AC、AB分別與⊙O交于點E,F,連接EF(如圖2).已知AC=8,⊙O的半徑為4.
(1)在旋轉過程中,有以下幾個量:①弦EF的長;②的長;③∠AFE的度數;④點O到EF的距離.其中不變的量是___________________(填序號);
(2)當α=________°時,BC與⊙O相切(直接寫出答案);
(3)當BC與⊙O相切時,求△AEF的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內折疊鋪平,恰好拼成一個無縫隙無重疊的矩形EFGH,若EH=5,EF=12,則矩形ABCD的面積是( )
A. 13 B. C. 60 D. 120
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com